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ABSTRACT—In this paper, deep learning technology, 
along with a Gated Recurrent Unit (GRU) combined with an 

attention mechanism, is used to enhance the recognition 

ability and risk assessment accuracy of abnormal trading 

behavior in financial markets. The GRU effectively solves 

the problem of gradient vanishing in traditional recurrent 

neural networks through its unique gated structure, allowing 

the model to learn more stable and effective feature 

representations in long sequence data. On this basis, the 

contextual attention (CA) module in the attention mechanism 

is introduced, enabling the model to automatically learn and 

assign different weights to various parts of the input 
sequence. Combined with bidirectional GRU and the 

attention mechanism, the model can not only capture 

temporal dependencies in the sequence but also highlight the 

key features that affect market anomalies, thus improving the 

model's ability to understand complex market dynamics. 

KEYWORDS—Deep Learning; GRU, Attention 

Mechanism,  CA Module; Anomaly Detection 

I. INTRODUCATION 

By merging sophisticated machine learning advancements, 

this manuscript integrates a Gated Recurrent Unit (GRU) 

augmented with a consideration-focused mechanism to 

establish a potent and precise market oversight framework. 

This endeavor aims to proficiently detect unusual trading 

activities and meticulously assess underlying risks within 

intricate financial ecosystems. 

Prevailing techniques for monitoring financial markets 

frequently encounter boundaries set by manually crafted 

regulations and a lack of intricate pattern discernment, 

rendering them ill-equipped to grapple with the multifaceted 
nature of temporal financial datasets—marked by extensive 

dimensions, non-linear traits, and ever-changing dynamics. 

Conversely, deep learning methodologies, specifically 

recurrent neural networks (RNNs), have demonstrated 

immense promise in parsing sequential information. 

Nonetheless, vanilla RNNs confront the obstacle of vanishing 

gradients when dealing with long data sequences, thereby 

curtailing their learning prowess. To surmount this 

impediment, our work adopts the GRU, which ingeniously 

manipulates 'reset' and 'update' gates to determine what data 

to forget or retain, thereby mastering long-term dependencies 

and excelling in deciphering financial time series. 

Capitalizing on this sturdy groundwork, we proceed to 
incorporate a consideration-centric approach, an ingenious 

scheme empowering the model to spontaneously recalibrate 

its focus based on varying segments' contributions to the final 

forecast. The essence of attention diverges from uniform input 

valuation; instead, it allocates emphasis in proportion to each 

input's relevance to the immediate task. Applied to anomaly 

detection and risk assessment in financial markets, this 

empowers the model to instinctively filter out market cues 

vital for anomaly detection and risk assessment, sidestepping 

extraneous disturbances. This flexible accentuation of features 

markedly bolsters the model's accuracy and resilience. 

Employing a GRU with a bi-directional traversal, coupled 
with an emphasis module, fosters an exhaustive 

comprehension of chronological data. The bi-directional facet 

empowers the model to reflect not only on past market 

maneuvers but also to proactively incorporate impending data, 

providing a comprehensive view for anomaly recognition. 

Embedding the emphasis mechanism equips our field of view 

with precision optics, assuring the model zeros in on the 

market's most revelatory movements. Such a dual-pronged 

strategy vastly augments the model's grasp of intricate market 

rhythms and responsiveness, enabling it to detect market 

fluctuations promptly, meticulously gauge affiliated risks, and 
relay invaluable alerts to financial stewards and supervisors. 

It not merely stretches the theoretical horizons of deep 

learning usage in finance but also equips practitioners with a 

formidable implement, poised to occupy a pivotal position in 

future surveillance frameworks. By pinpointing anomalies 

with precision and adeptly appraising risks, the model 

facilitates timely regulatory interventions, safeguarding 

investors against market upheavals. Furthermore, it paves 

fresh avenues for financial entities to refine risk management 

blueprints and enhance decision-making caliber. As 

technology evolves, confidence grows that deep learning-

powered market oversight infrastructures will progressively 
bolster financial stability and foster economic prosperity. 

A. Research status of outlier detection 

The statistically grounded frameworks for anomaly detection 

confront obstacles, chiefly due to the obscure nature of real-
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world data distributions, rendering them elusive to perfect 

alignment with any pre-established mathematical schema. 

This, in turn, impacts the trustworthiness of inferred anomaly 

reports. Further exacerbating this challenge, the ascension in 

data dimensionality renders it a near-impossible feat to 
accurately delineate the data's dispersion profile. 

Knorr demarcated distance-oriented anomaly recognition 

methodologies, positing that data points exhibiting solitude, 

characterized by a scarcity of proximate points, should be 

flagged as anomalies [1]. This premise was subsequently 

expanded upon by Ramaswamy and colleagues in 2009, who 

pinpointed the top n data instances as anomalies through a 

summation of their distances to their k closest neighbors [2]. 

Despite the Intuitive appeal and facile comprehension of 

distance-centric techniques, they exhibit sensitivity to 

parameter tuning and incur substantial computational 

overhead in scenarios involving high-dimensional datasets. 
Clustering methodologies maintain a close kinship with the 

aforementioned density and distance-centric frameworks, 

isolating data points distant from cluster nuclei or inhabiting 

sparse territories as anomalies. The DBSCAN protocol 

exemplifies this application. Both the efficacy of clustering 

routines and the precision of anomaly identification hinge 

heavily on the precision of distance metrics, potentially 

restricting their pragmatic utility. 

Moreover, extensive research has ventured into harnessing 

avant-garde technologies – neural networks, Support Vector 

Machines (SVM), and Bayesian networks – to model and 
forecast sequential data patterns[3]. Anomalies are then 

discerned by contrasting the discrepancy between the models' 

predicted outputs and the empirical observations[4], thereby 

enriching the anomaly detection landscape with a multiplicity 

of strategic approaches. 

B. Research status of anomaly detection in financial 

markets 

Anomaly detection and risk assessment in financial markets 

have seen significant advancements through the application of 

deep learning technologies. Erfani et al. [5] explored the 

utilization of a linear one-class SVM in combination with deep 

learning for high-dimensional anomaly detection, 

demonstrating the potential of integrating traditional machine 

learning methods with deep neural networks. Chuah et al. [6] 

introduced the GMean model, which combines a semi-

supervised GRU and K-means clustering for predicting 

transcription factor binding sites, showcasing the flexibility of 
GRUs in handling temporal data. In the realm of financial risk 

prediction, various studies have applied machine learning 

techniques to forecast loan defaults and evaluate credit risks. 

Yu and Zhu [7] developed a data-driven approach using 

machine learning algorithms to predict default risk in peer-to-

peer lending, highlighting the application of machine learning 

in financial risk prediction. Emekter et al. [8] evaluated credit 

risk and loan performance using various predictive models, 

while Aksakalli et al. [9] employed Random Forests for risk 

assessment in social lending, illustrating the efficacy of 

ensemble methods in financial risk evaluation. 

Byanjankar et al. [10] implemented neural networks to predict 
credit risk in peer-to-peer lending, underscoring the superior 

performance of deep learning models over traditional methods. 

Cahuantzi et al. [11] conducted a comparative analysis of 

LSTM and GRU networks for learning symbolic sequences, 

revealing insights into the strengths and weaknesses of each 

architecture, which are pertinent for selecting the appropriate 

model for specific tasks. Tu et al. [12] utilized a GRU-

Informer model for real-time prediction of rate of penetration 

(ROP) in drilling operations, highlighting the potential of 

GRUs in real-time data processing.  Liu et al. [13] presented a 

novel approach in few-shot learning for product description 
calibration, emphasizing the role of deep learning in handling 

sparse data scenarios, a common challenge in financial market 

analysis. The integration of GRUs with attention mechanisms, 

as well as the application of various deep learning models, has 

significantly enhanced the ability to detect anomalies and 

assess risks in financial markets. These advancements provide 

practical tools for financial market oversight and risk 

management, extending the theoretical boundaries of deep 

learning applications and offering substantial practical value 

for financial entities and regulators. 

II. THEORETICAL BASIS 

Several studies have explored the use of recurrent neural 

networks (RNNs) and their variants to address the challenges 

posed by financial time series data. Xu et al. [14] investigated 

financial risk behavior prediction using deep learning and big 

data, highlighting the efficacy of advanced neural networks in 

capturing complex patterns within financial datasets. Their 

work underscores the potential of deep learning models, 

particularly Gated Recurrent Units (GRUs), in enhancing the 

accuracy of risk assessments. 

In the realm of high-frequency trading, Sun et al. [15] 
demonstrated the integration of Long Short-Term Memory 

(LSTM) networks with Extreme Value Theory (EVT) to 

manage financial risk. This approach effectively handles the 

volatility and extremities inherent in high-frequency trading 

data, providing a robust framework for risk management. 

The optimization of natural language processing (NLP) 

models through multimodal deep learning has also garnered 

attention. Sun et al. [16] focused on improving NLP models 

by incorporating multimodal data, which can be pivotal in 

financial market analysis where textual data from news and 

reports significantly influence market dynamics. Similarly, 
Wang et al. [17] advanced a multimodal deep learning 

architecture for image-text matching, a technique that can be 

adapted for analyzing financial reports and associated visual 

data, thereby enriching the data inputs for financial models. 

Further contributions have been made in the area of emotional 

analysis using large language models, as explored by Yang et 

al. [18]. Their work, although primarily focused on emotional 

analysis, provides valuable insights into the application of 

large language models in understanding sentiment and its 

impact on financial markets. 

A. GRU 

The configuration of the GRU unit is depicted in Figure 1. Our 

advanced model unites a long short-term memory network's 

admission control and a disregard control, integrating these 

dual functionalities concurrently. 

It encompasses a dual-state system: one for retaining 

information, referred to as memory, and another for holding 
data, termed storage. 
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Figure 1: GRU Model structure 

The educational procedure was bifurcated into a pair of phases. 

Initially, a framework was fabricated with the aim to 

transmute sequences of disparate lengths into sequences of a 

standardized extent for inscription. Sequentially, a subsequent 
framework was devised, tasked with the inverse operation - 

reverting this standardized-length sequence back to its original, 

variable-length configuration. 

The task of the inscription is executed by employing a 

Recurrent Neural Network (RNN), accountable for 

scrutinizing each elemental component of the input sequence 

X in a consecutive manner. Every instance a novel constituent 

within the sequence is examined, the RNN readjusts its 

concealed state. Throughout the entire ingress procedure, the 

RNN amasses these concealed states, culminating with the 

occurrence of the sequence's termination cue, and consolidates 
them into a vector denoted as c. 

The phase of decryption engages another RNN model, 

meticulously tailored for prognosticating and generating the 

succeeding output constituent x, guided by the procured 

concealed state c. Reflecting the abridged explanation of 

RNNs, the concealed state of the decryption network at the 

ongoing temporal step t is contingent upon the state h⟨𝑡−1⟩ 

from the antecedent step, fused with the intelligence garnered 

from c. This latter is computed by employing a distinct 

algorithm, which incrementally materializes the output 

sequence through a stepwise generation process. 

h⟨𝑡⟩ = 𝜎(w𝑤ℎh⟨𝑡−1⟩ + w𝑤𝑦𝑦𝑡−1 + w𝑤𝑐c + b) (1) 

Likewise, the resultant at temporal instant t can be attained: 

𝑦𝑡 = w𝑤ℎ
′ h⟨𝑡⟩ + w𝑤𝑦

′ 𝑦𝑡−1 + w𝑤𝑐
′ 𝑐 + 𝑏 (2) 

Should you require forecasting a categorization issue, it may 
be addressed via the utilization of an activation function's 

invocation, alongside dynamically adjusting recollection and 

discarding latent elements: 

𝑟𝑗 = 𝜎([W𝑟x]𝑗 + [U𝑟h⟨𝑡−1⟩]𝑗)         (3) 

  W𝑟 and U𝑟 symbolize the entirely crimson matrix 
undergoing acquisition, while the analogous refreshment 

gate 𝑧𝑗 is delineated as: 

𝑧𝑗 = 𝜎([W𝑧x]𝑗 + [U𝑧h⟨𝑡−1⟩]𝑗)      (4) 

Under this scenario, the veiled condition tied to the ongoing j 
constituent is characterized as: 

ℎ𝑗
⟨𝑡⟩ = 𝑧𝑗ℎ𝑗

⟨𝑡−1⟩ + (1 − 𝑧𝑗)ℎ̃𝑗
⟨𝑡⟩ (5) 

Among them: 

ℎ̃𝑗
⟨𝑡⟩ = 𝜙([Wx]𝑗 + [U(r ∘ h⟨𝑡−1⟩)]𝑗)       (6) 

Upon the instance where the restart gate approximates zero, 

this signifies that the concealed status is set to mostly discard 

its prior condition, concentrating exclusively on the 

instantaneous input data for rejuvenation. Conversely, the 

modification gate assumes a moderating part in this 

progression, dictating the degree to which intelligence from 

the preceding concealed status is assimilated into the 

emerging concealed state. Given that every concealed unit is 
endowed with autonomous restart and modification gating 

machinery, they possess the capacity to individually 

concentrate on acquiring and seizing data linkages across 

disparate chronological scopes. More concretely, concealed 

units inclined towards apprehending instantaneous or brief-

period correlations are distinguished by recurrently elicitation 

restart gates; Inversely, units adept at seizing prolonged-

period correlations customarily manifest active modification-

gate conduct. 

B. CA module 

The concentration-directing mechanism steers the network 

towards emphasizing the nucleus components of the 

assignment, and subtly curtails the intrusion level of ancillary 

and disruptive data. This approach accomplishes a meticulous 

sifting and refinement of data, augmenting not just the 

velocity and precision of task accomplishment on a large scale, 

but also efficaciously alleviating the quandary of data surfeit, 
thereby enabling the network to dedicate more focus on 

excavating the elemental attributes of the task. Consequently, 

the directionality and productivity ratio of the learning process 

are fortified. 

More concretely, the integration of the conduit concentration 

mechanism is purposed to empower the network to self-

regulate, bestowing differential weights in accordance with 

the significance of separate conduits, spotlighting those traits 

pivotal for entity recognition, and concurrently minimizing 

the sway of unrelated data. Through the application of 

meticulously computed weights to individual conduits of the 

feature representation, the model becomes capable of 
capitalizing fully upon the conduit features most crucial for 

identification, directly fueling an upsurge in detection 

precision. 

Within the CA protocol, the employment of mean pooling 

activity along the breadth and altitude of the input feature 

depiction not only seizes the essence of conduit hierarchy but 

also ingeniously melds spatial data to ascertain that the model 

can attend to both conduit attributes and spatial characteristics 

concurrently, achieving a dual reinforcement of conduit and 

spatial concentration. The layout of this construct is illustrated 

in Figure 2. 

 
Figure 2: CA Structure Diagram 
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Observation of Figure 2 reveals that the CA submodule 

initiates by computing the mean of the incoming feature 

representation along separate axes of height and width: 

𝑧ℎ =
1

𝑊
∑  

0≤𝑖<𝑊

𝑥(ℎ, 𝑖) (7) 

𝑧𝑤 =
1

𝐻
∑  

0≤𝑗<𝐻

𝑥(𝑗, 𝑤) (8) 

In the formula, x represents the input feature map, which 

belongs to the space ℝC𝐶×𝐻×𝑊. Where C, H and W represent 

the number, height and width of channels respectively. By 

performing an average pooling operation on x in the height 

dimension, we obtain the output 𝑧ℎ , which has the shape 

ℝ𝐶×𝐻×1 ; The same average pooling along the width 

dimension yields 𝑧𝑤  with the dimensions ℝ𝐶×1×𝑊. Following 

this, the duo of condensed outcomes are concatenated in a 

sequential fashion along the conduit axis. Thereupon, a dual-
dimensional convolution stratum, batch normalization, and an 

energizing function are exerted onto the fused outcome to give 

rise to the ultimate yield, algebraically rendered as: 

𝑓 = 𝛿 (𝐵𝑁(𝐶𝑜𝑛𝑣2𝑑1×1(𝑧ℎ , 𝑧𝑤))) (9) 

In the formula description, the operation (,) represents the 

concatenation along the channel dimension; The 𝑜𝑛𝑣2𝑑1×1 

convolution represents the operation using a two-dimensional 

convolution kernel of size 1×1; BN stands for batch 

normalized processing steps; 𝛿 indicates the type of nonlinear 

activation function to be applied; The middle feature graph 𝑓 

has the dimension ℝ𝐶/𝑟×1×(𝐻+𝑊), where 𝑟 is used to adjust the 

proportion of channel reduction as in the SE module. 

Subsequently, the intermediate result 𝑓 is split into two 

components 𝑓ℎ  and 𝑓𝑤 , which undergoes two dimensional 

convolution operations respectively and are transformed by 

the Sigmoid function to produce two attention vectors 𝑔ℎ and 

𝑔𝑤 . Ultimately, each of these dual concentration vectors is 

element-wise multiplied with the pristine input 𝑥 to procure 

the conclusive feature diagram output 𝑦, with the 

mathematical encapsulation thereof being outlined as follows: 

𝑓ℎ , 𝑓𝑤 = 𝑆𝑝𝑙𝑖𝑡(𝑓) (10) 

𝑔ℎ = 𝜎(𝐶𝑜𝑛𝑣2𝑑1×1(𝑓ℎ)) (11) 

𝑔𝑤 = 𝜎(𝐶𝑜𝑛𝑣2𝑑1×1(𝑓𝑤)) (12) 

𝑦 = 𝑔ℎ ⋅ 𝑔𝑤 ⋅ 𝑥 (13) 

Where 𝑆𝑝𝑙𝑖𝑡 is the resolution tensor; 𝜎 is the Sigmoid function. 

A further embodiment of the composite concentration schema 

uniting conduit and spatial aspects manifests in CA, 

distinguished by its ingenuity in deftly weaving spatial 

attributes into conduit characteristics, thereby accomplishing 

a streamlined fusion of data. CA is architected with an 

emphasis on minimalism and adaptability, empowering it to 

harmoniously blend into the canonical architectural modules 

of portable networks, enhancing model efficacy sans incurring 

excessive computational strain. 

Empirical evidence illustrates that CA not merely excels in the 

realm of image categorization undertakings but also exhibits 
remarkable prowess in downstream deployments, including 

object recognition and semantic partitioning, underscoring its 

broad applicability and augmentative impact. 

III.  GRU MODEL FUSED WITH CA MODULE 

This manuscript unites the profound study paradigm rooted in 

the concentration-directing mechanism's CA module 

alongside GRU (Gated recurrent unit) to delve into its 

prospective deployment in identifying anomalies and gauging 

risks within the fiscal domain, with the architectural depiction 

of the model presented in Figure 3. 

 

Figure 3: Deep Learning CA+GRU Model 

The framework initiates by deploying GRU to metabolize 

sequential temporal information, thereby seizing the mutable 
facets of fiscal landscapes. GRU adeptly tackles the 

predicament of extended chronological dependencies through 

its idiosyncratic gating infrastructure (comprising the reset 

and refresh gates), assuring the model retains salient historical 

wisdom while recalibrating to incorporate novel inputs. 

Supplementing GRU, the Context-Sensitive Focus (CA) 

submodule was incorporated to dynamically allocate 

significance coefficients to diverse segments of the ingress 

chronology. Via educating itself on the interconnectedness 

and primacy of the input dataset, the CA submodule 

empowers the model to concentrate on facets that are 

supremely pivotal for anomaly sleuthing and hazard appraisal, 
concurrently mitigating disruptive noise interferences, as 

illustrated in Figure 4. 

 
Figure 4: Flow chart of the experiment 

The CA submodule equips the model with the faculty to 

adaptively zero in on information of utmost relevance to the 

undertaking, proficiently sift out extraneous disturbances, and 

amplify the model's discernment of market irregularities. By 

fusing GRU's sequential data handling prowess with CA's 

astute attention apportionment, the model attains heightened 
precision in encapsulating the intricate kinetics of fiscal 

ecosystems, thereby boosting the veracity of anomaly 

sleuthing and hazard appraisals. 

Concurrently, the concentration-directing apparatus furnishes 

a conduit for instinctively grasping the model's rationale 

behind decision-making. Via meticulous data conditioning, 

superfluous computations are curtailed, enabling the model to 

function more expediently without sacrificing excellence, 

rendering it apt for voluminous datasets and real-time 

surveillance contexts. 

IV.  EXPERIMENTAL ANALYSIS 

A. Data preprocessing 

Financial time data contain structures that are trend, cyclical, 

and time-dependent. The differencing operation calculates the 
difference between the adjacent values of the series to 

eliminate the trend and periodicity and obtain a stationary time 

series. The dataset embraces the S&P 500 Index extracted 

from American equity market figures, encompassing 

parameters such as the initial price, terminal price, transaction 
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volume, peak value, and nadir value, amongst others. Data is 

harvested at a frequency of one instance per trading session,’ 

B. Experimental Setup 

The chronological fiscal data corpus is divided into two 

partitions: a training set and a test set, wherein 70% of the total 

data is dedicated to training the model, and the remaining 30% 

is used for evaluating its performance. Due to measurement 

inconsistencies, the raw dataset is filled with signal 

disturbances and numerous deviant readings. To mitigate 

measurement discrepancies and reduce computational 

deviations caused by these outliers, it is imperative to 
homogenize the raw data. This process includes gap value 

rectification, uniformity adjustments, consolidation of various 

datasets, and chronology scaling, all aimed at ensuring the 

effectiveness of the model's training. 

Employing the lattice quest methodology, the consignment 

magnitude is calibrated to 128 units, alongside a tally of 3 for 

the enigmatic stratum constituents. The Mean Squared 

Deviation Root (MSDR) is a popular measure for assessing 

the predictive efficacy of chronological financial sequences. It 

quantifies the disparity between the anticipated value and the 

empirical outcome, manifesting as a positive real number. 

Here, a lower score indicates heightened predictive precision. 

Its computation is as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
Σ𝑖=1

𝑛 (𝑥𝑖 − 𝑥̂𝑖)2 (14) 

Where, 𝑛 is the total number of observations, 𝑥𝑖 is the target 

value, and 𝑥̂𝑖 is the actual value. 

C. Experimental results 

The algorithm is trained using the training subset and then 

assessed on the test subset, with the benchmark being its 

ability to identify atypical trading behavior. Concurrently, the 

risk intensity is assessed based on the fluctuations forecasted 
by the algorithm. The algorithm's input data consists of 

previous observations of the adjusted terminal value, while its 

output, or labeling, represents the impending valuation of the 

adjusted terminal price. 

The rectified concluding quotation of the S&P 500 equity 

index epitomizes a solitary-variable chronological 

progression forecasting challenge, entailing multi-stage 

anticipation through a profound learning architecture, as 

visually elucidated in Figure 5. 

[18] 

Figure 5: The CA+GRU model is used for one-step ahead prediction

Chronological progression is delineated along the horizontal 

expanse of the chart, demarcating the passage of individual 

trading epochs, whereas the perpendicular axis charts the 

deviation in the rectified terminal pricing. The azure line 

depicts the trajectory of the rectified closure, whereas the 

crimson line illustrates the succeeding (viz., the successive 

trading epoch) rectified conclusion predicated upon a mono-

stage prognosis methodology. By way of illustration, the 

punctuate indicators 𝑎 and 𝑐 correlate respectively to the 
veridical rectified closure valuations on epochs 14723 and its 

immediate successor, epoch 14724. The distinctive juncture 𝑏 

on the scarlet line embodies the forecasted rectified closure 

price for epoch 14723 inferred from the bourse data pertaining 

to epoch 14724. Put differently, the dot 𝑏 symbolizes a 

prospective stride, a conjecture of the succeeding day's 

terminal price hinged upon the antecedent day's intelligence. 

The congruent rationale and modus operandi are applicable 

for recursively forecasting and mapping the rectified closure 

prices for all ensuing epochs. 
Accordingly, the MSDR indicator is invoked to gauge the 

predictive efficacy of the multi-phase forecasting prototype  

 

for the inaugural trading epoch, the subsequent trading epoch, 

and the tertiary trading epoch, deploying both the GRU 

prototype and the GRU profound learning prototype 

amalgamated with the CA submodule. The empirical 

consequences are tabulated in Table 1. 

Table 1:Model Performance Comparison 

Methods 1 2 3 

GRU 13.28 13.27 13.29 

CA+GRU 9.76 9.78 9.74 

This graphical representation illustrates the contrasting 

performances of a dual set of models in gauging fiscal market 

hazards. Evident from the tabular data, under the RMSE index 

scrutiny, the prognostic efficacy of the GRU prototype 

remains fairly consistent over the triad of trading epochs. 

Conversely, the GRU profound learning schema fused with 

the CA submodule witnesses a marked amelioration in its 

forecasting prowess. 
Through juxtaposing the datasets from these twin frameworks, 

we discern that the CA+GRU schema registers a conspicuous 

upsurge in prediction precision, notably during the 
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anticipation of the inaugural and tertiary trading sessions, with 

the discrepancy value declining approximately by a third with 

respect to the GRU prototype. This evidences that the CA 

submodule potentiates the GRU model's learning faculty 

significantly, thereby facilitating an enhancement in the 
exactness of protracted forecasts. 

The empirical outcomes manifest that the GRU schema 

augmented with CA surpasses the foundational model in 

pinpointing atypical transactions and hazard appraisals, with 

special prominence in intricate and disturbance-laden data 

ecologies. This superiority is rooted in the attention dispersion 

chart provisioned by the concentration-directing apparatus, 

which intuitively showcases the traits that captivate the 

model's focus, thereby reinforcing the model's explicability. 

Concurrently, via an exploratory dissection of the 

computational velocity and memory footprint data emanating 

from the model's engagement with voluminous datasets, it is 
corroborated that this hybrid construct bolsters resource 

deployment efficacy and markedly augments the practicability 

within real-world implementations. 

V.  CONCLUSION 

This paper focuses on leveraging advanced deep-learning 

methodologies to enhance the efficacy and precision of 

financial market oversight, particularly in detecting 

unconventional trading activities and estimating impending 

risks. Our research devises and implements an innovative 
method that integrates an attention-augmented Gated 

Recurrent Unit (GRU) to provide more precise and meticulous 

surveillance of complex fluctuations within financial markets. 

Current surveillance methodologies largely rely on pre-

established regulations. Their limitations lie in disregarding 

the complexity and dynamism inherent in financial datasets 

and their inadequacy in swiftly adapting to emerging 

anomalous patterns in the marketplace. Conversely, deep 

learning technologies, notably the Recurrent Neural Networks 

(RNNs) family, have shown immense promise in handling 

sequential data, although the vanishing gradient problem 
confronting conventional RNNs in prolonged sequences 

hampers their efficacy. Therefore, we opt for the GRU as the 

foundational architecture, which mitigates the long-term 

dependency challenge through a single gating mechanism, 

thereby enhancing the learning proficiency and forecasting 

accuracy of the model when dealing with financial time series 

data. 

By merging the bidirectional GRU with the CA submodule, 

the model is empowered to both review historical market 

behavior and predict upcoming trends, fostering a 

comprehensive understanding of chronological sequences. 

The combination of the bidirectional architecture with the 
attention mechanism enables the swift identification of critical 

dynamics within complex market intelligence. This capability 

is pivotal for the timely detection of market fluctuations and 

the accurate assessment of associated risks. 

Our model not only advances the theoretical boundaries of 

deep learning technology in financial market supervision but 

also underscores its vast practical potential. It serves as a 

powerful tool for financial entities and regulators, enabling the 

prompt detection of market turbulence and facilitating timely 

regulatory intervention to safeguard investors' interests. 

Additionally, it aids financial bodies in adopting more targeted 
risk management strategies, refining investment approaches, 

and enhancing decision-making capabilities. As technology 

advances and model refinements continue, the deep learning-

powered financial market surveillance system will evolve, 

playing an increasingly crucial role in maintaining fiscal 

stability and promoting steady economic growth. The 

outcomes of this investigation not only drive innovations in 
financial market surveillance technology but also contribute 

intellectual and operational strength to the development of the 

global financial security framework, ushering in a new era of 

more efficient and intelligent financial market oversight. 
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