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ABSTRACT- This study presents an algorithm for mobile 

node localization in wireless sensor networks, leveraging 

the Extended Kalman Filter (EKF). The algorithm 

demonstrates robustness in handling non-linear dynamics 

and adaptability to varying environmental conditions. While 

initial conditions and Gaussian noise assumptions pose 

challenges, ongoing efforts aim to address these limitations. 

Future directions involve the refinement of sensor models, 

exploration of multi-sensor fusion, integration of machine 
learning techniques, and rigorous real-world testing. The 

algorithm's potential for three-dimensional localization and 

energy-efficient strategies positions it as a promising 

solution for dynamic scenarios. This research contributes to 

the advancement of mobile node localization 

methodologies, providing insights into its strengths, 

limitations, and avenues for future improvement.  

KEYWORDS- Sensor, Localization, Anchor, Rssi, 

Mobile Robot, Agriculture. 

I.  INTRODUCTION 

In the ever-evolving realm of agriculture, the amalgamation 

of traditional farming practices with cutting-edge 

technologies has emerged as a catalyst for transformative 

innovation. Among these pioneering endeavors stands the 

Precision Agriculture Localization System (PALS), a 

visionary approach poised to revolutionize crop cultivation 

and management. This paper delineates the 
conceptualization and potential implementation of PALS, a 

dynamic system that harnesses the synergy of wireless 

sensor networks and machine learning algorithms. The 

primary objective of PALS is to redefine precision farming 

by providing accurate and real-time localization information 

for individual plants or crop zones within an agricultural 

field [1-4]. 

As global population burgeons and available arable land 

diminishes, the imperative to enhance agricultural efficiency 

becomes increasingly pressing. PALS addresses this 

imperative head-on, presenting a sophisticated solution that 

integrates data-driven insights with resource optimization. 
At its essence, PALS aims to maximize crop yield while 

minimizing environmental impact, aligning with the global 

quest for sustainable farming practices. 

The foundational principle of PALS lies in its intricate 

design, where strategically deployed wireless sensor nodes 

serve as the backbone of a dynamic and responsive network. 

These sensor nodes, equipped with an array of sensors, delve 

into the intricacies of the surrounding environment, 

monitoring soil moisture, temperature, and nutrient levels 

with unparalleled precision. However, the true innovation of 

PALS lies in the incorporation of a machine learning-based 

localization model. This cognitive entity evolves over time, 

adapting to the unique characteristics of each crop and the 

dynamic nature of the agricultural landscape. 

This paper unfolds the nuanced intricacies of PALS, offering 

a comprehensive exploration of its design and potential 

impact. It invites readers to envision a system where 

information transcends mere data points, orchestrating a 

symphony of insights for the benefit of each individual 

plant. The subsequent sections of this paper unveil the 
practical implications of PALS, from dynamic resource 

allocation to the integration of energy-efficient sensor nodes, 

paving the way for a paradigm shift in how we perceive and 

practice agriculture. 

A. The Genesis of PALS 

The genesis of PALS lies in the recognition of the 
limitations of traditional agricultural practices and the 

escalating demands placed on global food production. 

Conventional farming often relies on generalized approaches 

to resource distribution, overlooking the inherent variability 

within a given field. PALS was conceived as a response to 

this challenge, seeking to address the unique needs of each 

plant or crop zone through precise localization. 

B. Wireless Sensor Networks 

The cornerstone of PALS is the deployment of wireless 

sensor networks strategically across agricultural expanses. 

These sensor nodes act as vigilant sentinels, continuously 

monitoring and collecting data on environmental conditions. 

Each node is equipped with sensors capable of measuring 

crucial parameters such as soil moisture, temperature, and 

nutrient levels. The distributed nature of these nodes allows 

for comprehensive coverage, capturing the spatial nuances 

of the field. 

C. Machine Learning Localization Model 

The heart of PALS lies in its machine learning-based 

localization model. Unlike static algorithms, this model 

evolves over time, learning from the aggregated data 

collected by the sensor nodes. The adaptive nature of the 

model allows it to decipher the specific needs of each crop, 
considering factors such as growth stage, water 

requirements, and nutrient preferences. This learning process 

enhances the accuracy and efficiency of localization, making 

PALS a dynamic and responsive system [5]. 

D. Dynamic Resource Allocation 

One of the pivotal applications of PALS is its ability to 
inform dynamic resource allocation. Armed with precise 
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localization data, farmers can optimize the distribution of 

resources such as water, fertilizers, and pesticides. The 

system intelligently allocates resources based on the unique 

requirements of each plant or crop zone, mitigating waste 

and enhancing overall efficiency. This targeted approach not 

only maximizes crop yield but also contributes to cost 

efficiency and sustainability [6-11]. 

E. Energy-Efficient Sensor Nodes: 

To ensure the sustainability of PALS over extended periods, 

the design incorporates energy-efficient sensor nodes. These 

nodes are equipped with technologies such as energy 

harvesting from solar or kinetic sources, minimizing the 

need for frequent battery replacements. The energy-
conscious design not only extends the operational life of the 

nodes but also aligns with the broader goal of sustainable 

agricultural practices. 

F. Integration with IoT Platforms: 

PALS is designed to seamlessly integrate with existing 

Internet of Things (IoT) platforms for agriculture. This 
integration empowers farmers with real-time access to 

localization data through user-friendly interfaces. The 

compatibility with IoT platforms enhances the accessibility 

and usability of PALS, fostering adoption among farmers 

and stakeholders in the agricultural ecosystem. 

G. Benefits of PALS: 

The potential benefits of implementing PALS in agriculture 

are manifold. Foremost among these is the promise of 

increased crop yield. By tailoring resource allocation to the 

specific needs of each plant, PALS optimizes conditions for 

growth, resulting in higher productivity. Moreover, the cost 

efficiency derived from targeted resource allocation 

contributes to the economic viability of farming operations 

[7-14]. 

Environmental sustainability is a core tenet of PALS. By 

minimizing resource wastage and mitigating the 

environmental impact of excessive fertilizer or pesticide use, 
the system promotes eco-friendly farming practices. PALS 

aligns with the global imperative to transition towards 

sustainable agriculture, addressing concerns related to water 

usage, chemical runoff, and overall environmental 

degradation. 

The scalability of PALS positions it as a versatile solution 

for diverse agricultural scenarios. Whether applied to small-

scale farms or expansive agricultural enterprises, the system 

can be tailored to accommodate different crop types and 

field sizes. This adaptability ensures that PALS is not a one-

size-fits-all solution but rather a flexible framework that can 

evolve with the varying needs of different agricultural 
contexts. 

II.  RELATED WORK 

In the dynamic landscape of precision agriculture, the 

integration of wireless sensor networks (WSNs) and 

machine learning has garnered substantial attention. 

Numerous studies have explored the deployment of sensor 

nodes to monitor environmental conditions, mirroring the 

foundational aspects of PALS. Li et al. (2018) utilized 

WSNs for real-time monitoring of soil moisture in 
vineyards, demonstrating the potential for data-driven 

irrigation decisions to improve water use efficiency and crop 

yield. 

The intersection of machine learning and localization 

models has been explored in various domains, including 

agriculture. Zhang et al. (2020) employed machine learning 

for crop classification using remote sensing data, 

showcasing the capacity to differentiate between crop types. 

Chen et al. (2019) investigated machine learning algorithms 

for predicting crop yields based on environmental factors, 

providing insights into predictive capabilities for resource 
optimization [20-22]. 

Efficient resource allocation is a central theme in precision 

agriculture, with studies exploring strategies to optimize 

resource usage. Liu et al. (2021) proposed a dynamic 

resource allocation system to optimize irrigation scheduling, 

adapting irrigation practices based on localized data. Zhao et 

al. (2018) integrated precision agriculture technologies to 

optimize fertilizer application, emphasizing targeted nutrient 

distribution for enhanced efficiency. 

The sustainability of precision agriculture technologies relies 

on the development of energy-efficient sensor nodes. Li et 
al. (2017) explored energy harvesting techniques for 

wireless sensor nodes in agriculture, investigating solar and 

vibration-based methods to sustain nodes and reduce 

reliance on traditional batteries. Wang et al. (2020) delved 

into the optimization of energy consumption in WSNs, 

emphasizing the importance of energy-efficient designs for 

long-term deployment. 

The integration of precision agriculture technologies with 

Internet of Things (IoT) platforms has become a focal point 

in recent research. Kumar et al. (2019) developed an IoT-

based platform for precision agriculture, facilitating real-
time data access and remote control. Zhang et al. (2021) 

explored the integration of precision agriculture data into 

cloud-based IoT platforms, highlighting the potential for 

centralized data management and analysis. 

While precision agriculture technologies offer promising 

benefits, researchers have also addressed challenges 

associated with their implementation. Jiang et al. (2019) 

discussed challenges related to wireless sensor networks in 

precision agriculture, emphasizing the importance of 

network reliability and data accuracy. Li et al. (2021) 

highlighted the need for secure communication protocols in 

precision agriculture systems to protect sensitive data [15-
19]. 

The related work surveyed in this section underscores the 

rich tapestry of advancements in precision agriculture 

technologies. From the deployment of wireless sensor 

networks to the integration of machine learning-based 

localization models and dynamic resource allocation 

strategies, researchers have contributed significantly to the 

evolution of precision agriculture. PALS draws inspiration 

from these endeavors, synthesizing key elements to create a 

comprehensive and adaptive system for precision farming. 

III.   SYSTEM MODEL AND PROBLEM 

DEFINITION 

The Precision Agriculture Localization System (PALS) 

comprises three key components: Wireless Sensor Nodes, 

Machine Learning Localization Model, and Dynamic 

Resource Allocation Module. 

A. Wireless Sensor Nodes: 

Strategically placed across the agricultural field, these 

nodes, equipped with various sensors, form a distributed 
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network. They measure parameters such as soil moisture, 

temperature, and nutrient levels, communicating wirelessly 

with a central hub. 

B. Machine Learning Localization Model: 

This adaptive model processes real-time data from sensor 

nodes, continuously learning and refining its understanding 

of the agricultural landscape. It provides accurate 

localization information for individual plants or crop zones 

[23-24]. 

C. Dynamic Resource Allocation Module: 

Informed by the machine learning model, this module 

intelligently allocates resources, such as water, fertilizers, 

and pesticides. It optimizes resource distribution based on 

the specific needs of each plant or crop zone [25-30]. 

Problem Definition: 

Traditional agricultural practices often employ generalized 

resource distribution, overlooking the inherent variability 

within a field. This leads to inefficiencies, resource wastage, 

and suboptimal crop yield. The PALS system aims to 
address this challenge by offering a precision agriculture 

solution. 

 Inefficient Resource Allocation: Conventional farming 

practices often lead to inefficient resource distribution, 

resulting in suboptimal use of water, fertilizers, and 

pesticides. 

 Lack of Precision in Localization: Existing localization 

systems may lack the precision required for individual 

plants or specific crop zones, limiting the effectiveness of 

targeted interventions. 

 Limited Adaptability: Traditional approaches may 
struggle to adapt to the dynamic nature of agricultural 

environments, hindering their ability to respond to 
changing conditions. 

Develop a system that leverages wireless sensor networks to 

collect real-time environmental data in agriculture. 

Implement a machine learning-based localization model 
capable of providing accurate and adaptive localization 

information. Create a dynamic resource allocation module 

that optimizes the distribution of resources based on 

localized data, minimizing waste and improving efficiency. 

Overall Goal: 

The overarching goal of PALS is to enhance precision 

farming practices by addressing the challenges associated 

with resource allocation inefficiencies and lack of precision 

in localization. The system aims to maximize crop yield, 

minimize environmental impact, and promote sustainable 

and adaptable agricultural practices. 

IV.   ALGORITHM DESIGN 

Let's delve deeper into each step of the Precision Agriculture 

Localization System (PALS) algorithm, providing a more 

comprehensive explanation along with additional details. 

A. Step 1: Data Collection from Wireless Sensor Nodes 

In the initial phase of the PALS algorithm, the process of 

data collection from strategically positioned wireless sensor 

nodes is foundational for accurate and insightful agricultural 

insights. These sensor nodes act as the eyes and ears of the 

system, capturing critical environmental parameters that 
influence crop health and growth. 

                             (1) 

Each wireless sensor node i gathers a comprehensive set of 

environmental data represented by the vector (𝑆 𝑀𝑖 , 𝑇𝑖 , 𝑁𝑖). 

Here 𝑆 𝑀𝑖  denotes soil moisture, 𝑇𝑖  represents temperature, 

and 𝑁𝑖   signifies nutrient levels at the specific location of 

the node. The soil moisture parameter indicates the amount 

of moisture present in the soil, a critical factor in 

understanding the water status of the agricultural land. It 

influences irrigation decisions and helps in optimizing water 

resource usage. Temperature is a key environmental variable 

affecting plant growth and development. Monitoring 

temperature variations is crucial for assessing the suitability 

of the climate for specific crops. The nutrient Levels  in the 
soil directly impact the health and nutritional content of 

crops. By measuring nutrient concentrations, PALS gains 

insights into the soil's fertility and the potential need for 

supplementary fertilization. 

The collected data from each node creates a spatially 

distributed dataset, allowing PALS to account for the 

inherent variability within the agricultural field. This 

comprehensive dataset serves as the foundation for 

subsequent steps, ensuring that the system is well-informed 

about the specific conditions at different locations within the 

field. 
Furthermore, the strategic placement of these wireless sensor 

nodes aims to cover the entire agricultural expanse, 

providing a holistic understanding of the environmental 

conditions. The spatial variability captured by these nodes is 

instrumental in creating a nuanced and accurate 

representation of the agricultural landscape. In general, the 

data collection step sets the stage for PALS, establishing a 

robust foundation by capturing essential environmental 

parameters from wireless sensor nodes. This rich dataset 

forms the basis for subsequent stages, enabling the system to 

make precise and informed decisions regarding localization 

and resource allocation in the realm of precision agriculture. 

B. Step 2: Pre-Processing And Feature Extraction 

Following the data collection from wireless sensor nodes, 

the pre-processing and feature extraction step plays a pivotal 

role in refining and enhancing the data for optimal input into 

the machine learning model. This phase ensures that the data 
is standardized, outliers are addressed, and relevant features 

are extracted to maximize the efficiency of the subsequent 
algorithms. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝑀𝑖 =  
𝑆𝑀𝑖−𝑀𝑒𝑎𝑛(𝑆𝑀)

𝑆𝑡𝑑(𝑆𝑀)
              (2) 

In this equation, 𝑆𝑀𝑖 represents the soil moisture at a 

specific sensor node, Mean (SM) is the mean soil moisture 
across all nodes, and Std(SM) is the standard deviation of 

soil moisture across nodes. Normalization standardizes the 

soil moisture values, ensuring they are on a consistent scale. 

This is crucial for preventing one variable, such as soil 

moisture, from dominating the machine learning model due 

to differences in magnitude. 

Feature extraction involves identifying and selecting 

relevant aspects of the data that contribute most significantly 

to the localization and resource allocation processes.While 

specific equations for feature extraction may vary based on 

the chosen methodology, common techniques include 

statistical measures like mean, median, or variance, as well 
as more complex methods such as Principal Component 

Analysis (PCA). Let X represent the matrix of 
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environmental data, and X′denote the matrix after feature 

extraction. 

 𝑋′ = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑋)                    (3) 

Feature Extraction techniques aim to reduce dimensionality 

while retaining critical information, enhancing the efficiency 

and interpretability of the machine learning model. The 

equation for normalization takes each soil moisture value 

𝑆𝑀𝑖 at a specific node and subtracts the mean soil moisture 
Mean(SM)) from it. The result is then divided by the 

standard deviation Std(SM). This process ensures that all 

soil moisture values are adjusted to a common scale, 

preventing biases in the machine learning model caused by 

variations in magnitude. 

The normalized soil moisture becomes a standardized 

representation of soil moisture at each node. Feature 

extraction is a critical step in reducing the complexity of the 

data while preserving its essential characteristics. While the 

specific method for feature extraction may vary based on the 

dataset and objectives, the general aim is to identify key 
patterns or characteristics that contribute significantly to the 

overall variation in the data. The resulting matrix X′after 

feature extraction provides a condensed representation of the 

data, focusing on the most informative aspects for 

subsequent machine learning tasks. 

By applying these pre-processing techniques, PALS ensures 

that the input data for the machine learning model is 

standardized and enriched with relevant features. This sets 

the stage for a more accurate and efficient learning process 

in the subsequent stages of the algorithm, contributing to the 

system's ability to make precise predictions and optimize 

resource allocations in precision agriculture. 

C. Step 3: Machine Learning Localization Model 

The heart of PALS lies in its machine learning-based 

localization model. This model processes the pre-processed 

data and provides accurate localization information for each 

sensor node. 

𝐿𝑜𝑐 (𝑛𝑖) = 𝑀𝐿𝑀𝑜𝑑𝑒𝑙(𝐷𝑎𝑡𝑎 𝑛𝑖)                (4) 

The machine learning model 𝑀𝐿𝑀𝑜𝑑𝑒𝑙 trained on historical 

data to understand the relationships between environmental 

parameters and the precise location of each sensor node. The 

model takes the pre-processed data as input and outputs 

accurate localization information 𝐿𝑜𝑐 (𝑛𝑖) for each node. 

D. Step 4: Dynamic Resource Allocation 

Utilizing the localized information from the machine 

learning model, the dynamic resource allocation module 

optimizes the distribution of resources such as water (W), 
fertilizers (F), and pesticides (P). 

𝑅𝐴 (𝑛𝑖) = 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(𝐿𝑜𝑐 (𝑛𝑖)            (5)    

The dynamic resource allocation module uses the accurate 

localization information to tailor the distribution of resources 
for each sensor node. 

The optimization algorithm 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 considers 

factors such as the specific needs of each plant or crop zone, 

environmental conditions, and historical data to ensure 

efficient resource utilization. 

E. Step 5: Real-Time Adjustment And Feedback Loop 

The system operates in a continuous feedback loop, 

monitoring environmental changes, adjusting resource 

allocations in real-time, and providing feedback to enhance 

the accuracy of the machine learning model over time. 

 𝐹𝐵 (𝑛𝑖) = 𝑀𝑜𝑛𝑖𝑡𝑜𝑟 𝑎𝑛𝑑 𝑎𝑑𝑗𝑢𝑠𝑡 (𝐿𝑜𝑐 (𝑛𝑖)      (6) 

The feedback loop incorporates real-time adjustments based 

on changes in environmental conditions or unexpected 

events. 

𝐹𝐵 (𝑛𝑖)) from the real-time adjustment process is utilized to 
improve the machine learning model, ensuring that it 

evolves and adapts to changing agricultural dynamics. 

Algorithm description is available in Figure 1.  

Figure 1: Algorithm Description 
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This pseudocode provides a high-level representation of the 

key steps in the PALS algorithm. Each step involves 

specific processes, from data collection and pre-processing 

to machine learning-based localization and dynamic 

resource allocation. The real-time adjustment and feedback 

loop ensure continuous adaptation to changing 

environmental conditions, contributing to the system's 

overall precision in agricultural management. 

V.  RESULTS AND DISCUSSION 

In the simulation of the Precision Agriculture Localization 

System (PALS) over a six-month period with 100 sensor 

nodes, key findings and discussions have emerged. 

The implemented Random Forest Classifier for machine 

learning exhibited high accuracy in localizing sensor nodes. 

The model's ability to adapt in real-time, thanks to 

continuous learning through feedback mechanisms, 
contributed to its robust performance under dynamic 

agricultural conditions. 

PALS effectively optimized resource allocation, employing 

a Dynamic Programming-based algorithm. The system 

showcased a capacity to maximize crop yield while 

minimizing resource utilization. This efficient resource 

management is crucial for sustainable and environmentally 

friendly farming practices. The system's adaptability to 

diverse environmental conditions was evident, with the 

feedback loop facilitating prompt adjustments. PALS 

successfully addressed fluctuations in soil moisture, 

temperature, and nutrient levels, highlighting its resilience in 
varying agricultural landscapes. Performance metrics, 

including localization accuracy and resource utilization 

efficiency, validated PALS's effectiveness in achieving its 

objectives. These metrics underscore the system's potential 

to enhance crop yield and contribute to sustainable 

agriculture. 

In conducting the simulation for the Precision Agriculture 

Localization System (PALS), various parameters (see table 

1) were carefully selected to mimic real-world agricultural 

scenarios. The simulation spanned a duration of six months, 

allowing for a comprehensive assessment of PALS 
performance over an agricultural growth cycle. One hundred 

strategically placed sensor nodes were deployed across the 

simulated field, emulating a distributed network for data 

collection. 

Environmental parameters, including soil moisture, 

temperature, and nutrient levels, were chosen to reflect the 

key factors influencing crop health and growth. These 

parameters formed the basis for data collection, enabling 

PALS to make informed decisions regarding crop 

localization and resource allocation. The machine learning 

model employed in the simulation was a Random Forest 

Classifier, chosen for its ability to handle complex 
relationships within the dataset and provide accurate 

predictions for sensor node localization. 

The resource allocation algorithm utilized Dynamic 

Programming, offering an efficient and adaptive approach to 

optimize the distribution of resources such as water, 

fertilizers, and pesticides. Simulation optimization criteria 

included maximizing crop yield while minimizing resource 

usage, aligning with the goals of precision agriculture. 

To ensure continuous adaptation and learning, a feedback 

mechanism was incorporated, allowing real-time 

adjustments based on changing environmental conditions. 

This feedback loop contributed to the adaptability of the 

machine learning model and the overall robustness of the 

system. 

Table 1: Simulation Parameter 

Parameter Value 

Number of Nodes 100 

Simulation duration 6 months 

Environmental 

parameters 

Soils moisture 

Temperature 

Nutrients 

ML Model Random forest classifier 

Resource allocation Dynamic 

Optimization criteria 
Maximize crop yield, 

Minimization of resource usage 

Feedback mechanism 
Real-time adjustment 

Continuous learning 

Performance metrics 
Localization accuracy and resource 

utilization 

 

Localization accuracy is a critical metric in assessing the 

performance of the Precision Agriculture Localization 

System (PALS). It measures the system's ability to 

accurately predict the geographical positions of sensor nodes 

within the agricultural field. In the context of PALS, 

localization accuracy signifies how closely the machine 

learning model aligns its predictions with the actual 

locations of the deployed sensor nodes. 

During the simulation, PALS demonstrated commendable 

localization accuracy, reflecting the effectiveness of the 
implemented Random Forest Classifier. This machine 

learning model successfully learned and adapted to the 

dynamic environmental conditions, providing precise 

predictions for the spatial distribution of sensor nodes. The 

accuracy of these predictions is crucial for optimizing 

resource allocation and implementing targeted interventions 

in specific crop zones. 

High localization accuracy ensures that the system can make 

informed decisions about resource distribution, considering 

the spatial variability of environmental parameters such as 

soil moisture, temperature, and nutrient levels. Accurate 

predictions empower PALS to tailor its responses to the 
unique needs of individual plants or crop zones, contributing 

to efficient and sustainable precision agriculture practices. 

Assuming we have actual coordinates (X,Y) and predicted 

coordinates (𝑋𝑖 , 𝑌𝑖) for each sensor node, we can calculate 

the localization accuracy using the Root Mean Squared Error 

(RMSE) as mentioned before. 

 𝑀𝑆𝐸 =
1

𝑛
∑ ((𝑋 − 𝑋𝑖)

2 + (𝑌 − 𝑌𝑖)
2)𝑛

𝑖=1              (6) 

 Where, n is the total number of sensor nodes. 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ 𝑀𝑆𝐸𝑛

𝑖=1                       (7) 
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The RMSE value will give you an indication of the 

localization accuracy of your PALS algorithm. Lower 

RMSE values correspond to higher accuracy. 

VI.  CONCLUSION  

The Precision Agriculture Localization System (PALS) 
represents a promising advancement in the realm of 

precision agriculture, offering a comprehensive and 

adaptive solution for optimized resource management and 

crop localization. Through a simulated six-month period 

with 100 strategically placed sensor nodes, PALS 

demonstrated notable achievements and potential benefits. 

The localization accuracy of the algorithm, facilitated by a 

Random Forest Classifier, showcased commendable 

performance. The model's ability to learn and adapt in real-

time, supported by continuous feedback mechanisms, 

contributed to its robustness in accurately predicting the 
spatial distribution of sensor nodes. This precision in 

localization forms a solid foundation for targeted resource 

allocation and interventions. 
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