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ABSTRACT - Wireless Sensor Networks (WSNs), 

accurate and energy-efficient localization of sensor nodes 
remains a challenging task despite significant 

advancements. Current geolocation algorithms often 

struggle with scalability, adaptability, and energy 

efficiency, particularly in large-scale, dynamic 

environments where node failures or random shifts occur. 

This paper proposes a novel Secure Node Localization 

(SABWP-NL) approach, combining Self-Adaptive Binary 

Waterwheel Plant Optimization (SABWP) and Bayesian 

optimization to enhance localization accuracy, scalability, 

energy efficiency, and robustness. The method evaluates 

node trust using Dempster-Shafer Evidence Theory to 
secure localization against rogue nodes and optimizes the 

localization process through trilateral and multilateration 

systems. The SABWP-NL approach demonstrates superior 

performance in terms of localized nodes and localization 

error compared to existing techniques like BWP, ROA, and 

AO. Results show that SABWP-NL achieves the highest 

number of localized nodes and the lowest localization error, 

making it a promising solution for efficient and secure node 

localization in WSNs. 

KEYWORDS- Wireless Sensor Networks, Secure Node 

Localization (SABWP-NL) Approach, Bayesian 

optimization, Dempster-Shafer Evidence Theory.  

I. INTRODUCTION 

Wireless Sensor Networks (WSNs) have gained significant 

attention in recent years due to their wide range of 

applications, including environmental monitoring, 

healthcare, industrial automation, and military surveillance. 

One of the critical challenges in WSNs is the accurate 
localization of sensor nodes, as the functionality and 

effectiveness of these networks heavily depend on knowing 

the precise positions of nodes. Despite advancements in 

geolocation techniques, existing algorithms often face 

limitations in terms of energy consumption, scalability, 

adaptability, and accuracy. These challenges become more 

pronounced in large-scale and dynamic environments where 

sensor nodes may fail, shift randomly, or be subject to 

security threats like rogue nodes. Localization accuracy is 

often compromised by the trade-off between energy 

efficiency and precision, which is especially problematic in 

resource-constrained WSNs [1-5]. Additionally, many 
existing approaches lack robustness, making them less 

suitable for real-world deployment where scalability and 

reliability are essential. Applications such as target tracking 

and data source location are made possible by the location 

information in WSNs, which also allows for effective 
routing and power savings [6]. For a large-scale network 

with movable nodes, manual location setup is not possible. 

Since global positioning systems (GPS) are expensive in 

terms of both cost and energy consumption, it is not a 

practical option to equip every node with GPS hardware for 

localization [7]. High-resolution time synchronization with 

satellites is often achieved using complex hardware, such as 

an onboard GPS, which is a typical high-end solution [8]. 

This approach is not feasible due to the power and cost 

limitations of small sensor nodes. Alternative approaches 

need individual node devices capable of varying across 

adjacent nodes. This is most crucial topics, since location 
data is frequently needed for coverage, location services, 

deployment, target tracking, routing, and rescue [9-14]. 

However, conventional localization solutions sometimes 

encounter difficulties due to things like challenging 

deployment conditions, scarce resources, and possible 

security risks. Incorrect node localization can cause data 

integrity issues, and ineffective routing, and eventually 

make it more difficult for the network to achieve its 

monitoring targets. Moreover, effective data transfer is 

critical to prolonging WSNs' operating life. Since sensor 

nodes are frequently placed in remote areas and run on 
batteries, it is essential to minimize energy usage when 

transmitting data. Existing routing techniques may not 

always emphasize energy efficiency, which could result in 

early node resource depletion and shorter network lifetime 

[15-18]. 

To address these challenges, Present research paper 

introduces a novel approach called Self-Adaptive Binary 

Waterwheel Plant Optimization (SABWP-NL), which 

integrates advanced optimization techniques with secure 

trust-based localization methods. By evaluating node trust 

using Dempster-Shafer Evidence Theory and employing 
SABWP for optimal node localization, the proposed 

method significantly improves localization accuracy, energy 

efficiency, and robustness. The approach is particularly 

effective in mitigating the effects of rogue nodes and 

ensuring secure localization, making it a promising solution 

for enhancing WSN deployment in real-world applications. 
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II. PROBLEM STATEMENT 

In WSNs, sensor node localization is still a difficult task in 
spite of great progress made in the area. The energy 

consumption, accuracy, scalability, and adaptability of 

current geolocation algorithms are frequently limited. 

Certain algorithms prioritize accuracy over energy 

efficiency when it comes to resource conservation in 

frameworks with limited resources. There are still problems 

with reliability, and scalability, particularly in large-scale 

networks and dynamic contexts where nodes may fail or 

shift randomly. Furthermore, the suggested approaches' 

evaluations are frequently not thorough enough, with 

insufficient analyses of their scalability, robustness, and 

flexibility to different deployment environments. Therefore, 
a unique localization methodology that combines several 

goals such as better localization accuracy, scalability, 

increased energy economy, robustness in dynamic 

situations, and thorough assessment methodologies is 

urgently needed. A strategy like this would greatly expand 

the capabilities of WSNs and make it easier for them to be 

widely deployed in a variety of real-world applications.  

III. PROPOSED METHODOLOGY 

The proposed approach SA-BWP is based on secure node 

localization. In this, the trust of nodes is evaluated and the 

based on the trust the nodes are arbitrarily positioned in the 

environment, and their locations are determined accurately 

using SA-BWP. Then, G-BWP is employed to select 

optimal routes for data transmission, with potential 

alterations made based on the presence of multiple sinks. 

This approach aims to enhance the performance of WSNs 

by optimizing secure node localization, route selection, and 
data transmission efficiency. The structure of proposed 

model is displayed in Figure 1. 

 

Figure 1: Proposed System Model

A. Secure Node Localization 

The first object function is to evaluate the trust of nodes; 

this is done using Dempster-Shafer Evidence Theory and is 

divided into three phases: (i) Direct trust assessment; (ii) 

Indirect trust evaluation; and (iii) A mix of the direct and 

indirect trust. 
Assume a sensor network that consists of both Anchor 

Node (AN) and Target Nodes (TN). The ANs in a network 

are presumed to be able to self-place utilizing positioning 

devices, whereas TNs must localize their position using 

information from ANs and other nodes. This approach uses 

the signal attenuation algorithm to estimate the location 

information first based on the information collected from 

the AN. Once the AN and TNs have gathered sufficient 

data, the maximum likelihood estimation approach is 

employed. The attacker nodes may tamper with the real data 

gathered by anchor node during this information gathering 
phase, which results in low localization accuracy. Either an 

anchor or target node may experience this situation. The 

Quality of Service (QoS) could be impacted if the malicious 

target node sends erroneous information to the anchor node. 

A data aggregation strategy is used when a rogue node 

transmits duplicate data. A trust evaluation-based model is 

presented to preserve target and anchor node credibility. 

According to this model, the target node with the highest 

trust value is regarded as dependable, and the node with the 

lowest trust value is eliminated from consideration for the 

next simulation cycle. Given that anchor node within range 

of an unknown target node sends a location request signal 

'Lreq' and that node receives an acknowledge packet 'Lack’ 

from the associated node. This incorporates a model of trust 

computation for both regular and anchor nodes, 

respectively. At this point, the comprehensive trust values 

are calculated using the values for direct and indirect trust. 
The following is an expression of the comprehensive trust's 

value:  

𝑇𝐶𝑜𝑚 =  𝛼 ∗ 𝑇𝐷 + 𝛽 ∗ 𝑇𝐼𝐷                       (1) 

Where, 𝑇𝐶𝑜𝑚 is value of comprehensive trust; 𝑇𝐷  represents 

value of direct trust; 𝛼 indicates weight factor of 𝑇𝐷 ; 𝑇𝐼𝐷  

denotes value of Indirect trust; 𝛽 specifies weight factor of 

𝑇𝐼𝐷;  

The final Direct Trust value can be calculated as following 
Eqn. (1) 
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𝑇𝐷 =  {

𝑀𝑎𝑏{𝑇} =  𝛼𝑎𝑏

𝑀𝑎𝑏{�̅�} =  𝛽𝑎𝑏

𝑀𝑎𝑏{𝑇, �̅� } = 1 − (𝛼𝑎𝑏 + 𝛽𝑎𝑏)

      (2) 

Where, 𝑀 represents probability of mass function; The sum 

of the data packet consistency, reception rates, and 

successful transmission degree is represented by 𝛼𝑎𝑏; 𝛽𝑎𝑏  

represents the total degree of transmission discard, 

reception rates, and packet irregularity. 

The trust functions are also computed after the node's trust 

has been assessed. Then, the indirect trust of nodes x, y is 

assessed using the data obtained from nearby nodes as 

indicated by Eqn. (3); in contrast to direct trust, the indirect 

trust is assessed using the trust data gathered from nodes 
that are in-between one another rather than by direct 

interactions. 

𝑇𝐼𝐷 =  {

𝑀𝑎𝑏{𝑇} =  𝛼𝑎−𝑥−𝑏

𝑀𝑎𝑏{�̅�} =  𝛽𝑎−𝑥−𝑏

𝑀𝑎𝑏{𝑇, �̅� } = 1 − (𝛼𝑎−𝑥−𝑏 + 𝛽𝑎−𝑥−𝑏)

      (3) 

Where, 𝑥 is the common neighbor for the nodes "𝑎" and "𝑏" 

and 𝛼𝑎−𝑥−𝑏 is the sum of the transmission-reception success 

probability rate and the consistency between nodes "𝑎" and 

"𝑥" and the nodes "𝑏" and "𝑥"; The failure probability rate 

of the aforementioned nodes is totalled as 𝛽𝑎−𝑥−𝑏.  

Furthermore, Eqn. (4) provides the final probability for the 

trust evaluation. 

𝑇𝐸𝑣𝑎𝑙 =  𝑀{𝑇} + (𝑃{𝑇}/𝑃{𝑇} + 𝑃(�̅�)) ∗ 𝑀{𝑇, �̅� }      (4) 

The following Eqn. (5) provides the average of the trust 

value along the length L: 

𝑇𝑎𝑣𝑔 =  ∑ 𝑇𝐸𝑣𝑎𝑙(𝑡 + 1)/𝐿𝐿
𝑎=1         (5) 

Higher trust levels indicate that nodes are more trustworthy. 

It may be necessary to exclude or give less weight to data 
from nodes with low trust scores. In the localization 

process, the distance measurements are determined based 

on the trust assessments. This study introduces Self-

Adaptive Binary Waterwheel Plant Optimization (SABWP) 

algorithm for localizing nodes after trust evaluation. 

B. Processes involved in SABWP 

A group of individuals utilize the Waterwheel Plant 

Optimization (WPO) technique to repeatedly explore the 

search space for good solution to a problem. The 

functionality of WPO has been combined with a number of 

additional operators to create a BWP algorithm that 

optimizes solutions in a discrete solution space. The 

binarization of WWPA is a method for solving feature 

selection issues that gain from formalizing the search space. 

The BWP Algorithm is a new algorithm that draws 

inspiration from the way waterwheel plants search and 

update their positions during the processes of exploration 

and exploitation. The act of selecting the best features for a 
classification issue in order to increase the accuracy of the 

classification is called feature selection, and it is 

accomplished using the BWP algorithm. The first stage, 

which defines transformation functions, can change the 

representation of the solution and optimization process from 

a continuous to a discrete form. It is imperative to address 

feature selection-specific issues using the innovative 

technique. The second modelled method for reaching BWP 

variant is to modify fitness function. It is necessary to 

calculate the fitness of every potential solution in order to 

determine overall best solution. It offers a specification of 

the fitness function in order to handle the particulars of the 

current circumstance. The best continuous solution obtained 

by the continuous WWPA is denoted as 𝑆𝑏𝑒𝑠𝑡 , and the 

continuous solution obtained by the WWPA algorithm is 
transformed to binary using the following sigmoid function. 

 

𝑏𝑖𝑛𝑎𝑟𝑦 =  {1          𝑖𝑓 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑆𝑏𝑒𝑠𝑡) ≥ 0.5
0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (6) 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑆𝑏𝑒𝑠𝑡) =  
1

1+𝑒−10(𝑆𝑏𝑒𝑠𝑡−0.5)
        (7) 

The main limitations of BWP are the performance is 

heavily reliant on the control parameters and fitness 

function selection, and the algorithm may become trapped 

in local optima, which might result in less-than-ideal 

answers. To overcome these drawbacks, the self-adaptive 
Bayesian inspired BWP is introduced in this phase to 

improve the performance. For this vector optimal solution is 

introduced using Bayesian optimization method in above 

function and it can be rewrite as:  

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑆𝑏𝑒𝑠𝑡) =  �̂�  (
1

1+𝑒−10(𝑆𝑏𝑒𝑠𝑡−0.5)
)       (8) 

Where, �̂� denotes vector optimal solution and it can be 

expresses as: 

�̂� =  argmax
𝜂

𝑃(𝑓(𝑥1:𝑛)| 𝜂)         (9) 

Finding a maximum likelihood estimate is the first step. By 

using this method, the probability of observations (𝑥1:𝑛) is 

obtained under the prior, (𝑓(𝑥1:𝑛)| 𝜂), and the notation can 
be change to show its reliance on the η. This is a 

multivariate normal density for likelihood. Then, set η to 

the value that maximizes this likelihood in estimation 

process. The 𝜂 value is set in the ranges between 0 and 1. It 

is especially helpful when minimizing an objective function 

that is difficult to analyze. The primary benefit of using 

Bayesian optimization is its ability to locate global optima 

in an acceptable period, even in hyperparameter spaces that 

are noisy or irregular. Bayesian optimization has been 

applied to improve continuous system performance and to 

adjust the optimal solution.  

C. SABWP-NL Based Localization Process 

The sensor's coordinate point is initiate by employing 

SABWP-NL localization approach. The goal of study is to 

reduce the objective function in order to measure the 

coordinate points of chosen node. WSN localization issues 

were taken into consideration as optimization issues were 
created using a variety of metaheuristic techniques.  The 

following procedures are involved in the SABWP-NL 
model for localizing the sensor nodes in WSN: 

 Arrange ‘X’ Target Node (TN) and ‘Y’ Anchor Node 

(AN) in any way within the sensor zone. Every AN is 
composed of location awareness to determine the 

location. Every TN and AN cover the signal range R. 

 Additive Gaussian noise is used to measure and modify 

the distances between TN and AN. The target node 

specifies the distance as 𝐷�̂� =  𝐷𝑟 + 𝑁𝑟, where, where 

𝐷𝑟 signifies the actual distance that is calculated using 

Eqn. () between TN's position (𝑎, 𝑏) and AN's location 

(𝑎𝑖 , 𝑏𝑖).  

𝐷𝑟 =  √(𝑎 − 𝑎𝑖)
2 + (𝑏 − 𝑏𝑖)

2     (10) 

Where, 𝑁𝑟 represents the noise that affects the expected 

distance from 𝐷𝑟 ±  𝐷𝑟 (
𝑆𝑛

100
), while 𝑆𝑛  stands for the 
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noise ratio in the distance that is evaluated. 

 If there are three anchor nodes inside the TN's 

communication radius, the desired node is considered 

localizable. Next, the distance between TN and three 
ANs is recognized, along with the explanation based on 

trilateral positioning system and coordinates of three 

anchor nodes 𝐴(𝑎1, 𝑏1), 𝐵(𝑎2, 𝑏2), and 𝐶(𝑎3, 𝑏3). 

Similarly, the coordinates of TNs are defined by using 

sine or cosine trigonometric formulas. The distance 

metrics of massive ANs are applied in the 

multilateration TN evaluation model concurrently to 

reduce errors from the original and predicted distance. 

 The location of TN can be determined autonomously for 

the localizable node using SABWP-NL technique. The 

given task enforces the coyotes inside the transmission 
radius of the ACN centroid: 

(𝑎𝑚 , 𝑏𝑚) =  (
1

𝐿
∑ 𝑎𝑖

𝐿
𝑖=1 ,

1

𝐿
∑ 𝑏𝑖

𝐿
𝑖=1 )  (11) 

Where, 𝐿 indicates total number of ANs within the 

localization TN's communication range. 

 The coordinates (𝑎, 𝑏) that lessen error localization are 

appropriate to be recognized as the TN using SABWP-

NL method. The primitives used in localized problem 

are a mean square distance between TN and ANs, which 

is reduced by using following Eqn. (12): 

𝑓(𝑎, 𝑏) =
1

𝐿
(∑ √(𝑎 − 𝑎𝑖)

2 + (𝑏 − 𝑏𝑖)
2 −𝐿

𝑖=1 𝐷�̂�)
2
    (12) 

Where, the quantity of AN within a TN transmission 

radius is indicated by 𝐿 ≥ 3. 

 The SABWP-NL technique is then used to identify the 

ideal position coordination (𝑎, 𝑏)  once the maximum 
number of iterations has been reached. 

 After assessing the localization target node NL, the 

whole localization error is defined. The distance 

between defined node coordinates (𝐴𝑖 , 𝐵𝑖) and actual 

node coordinates (𝑎𝑖 , 𝑏𝑖) is measured as the mean 

square, and it can be represented as following Eqn. (13): 

𝐿𝐸1 =
1

𝐿1
∑ √(𝑎 − 𝑎𝑖)

2 + (𝑏 − 𝑏𝑖)
2𝐿

𝑖=1   (13) 

 The TN is localized by repeating steps two through six 
in this process. The localization module is defined by 

the maximum error localization 𝐿𝐸1 and the number of 

unlocalized nodes 𝑈𝑁𝐿
 in the 𝑈𝑁𝐿

= 𝑀 − 𝑁𝐿 

application. An efficient localization is enhanced by the 

minimal score of 𝐿𝐸1 and 𝑈𝑁𝐿
 combined. 

A higher iteration count results in a higher number of 

localized nodes. As the measured position of TN performs 

an AN in the subsequent iteration, it also leads to an 

increase in the number of AN in the transmission radius of 

localizable TN. It can be applied to limit the flip uncertainty 

problem that leads to higher error localization. Therefore, 

increasing the iteration improves the processing time for 

localized data of the TN. The working process of SABWP-

NL is illustrated in Figure 2. 

 

Figure 2: Flowchart of SABWP based Node Localization



 
International Journal of Innovative Research in Computer Science and Technology (IJIRCST) 

 

Innovative Research Publication   5 

 

IV. PERFORMANCE EVALUATION OF NODE 

LOCALIZATION 

This section presents the analysis of Localized Node (LN) 

and LE of the SA-BWP based NL methodology with other 

existing techniques such as BWP, ROA, and AO. Table 1 

validate the localization performance of proposed technique 

with current models in terms of localized node. 

Table 1: Evaluation of LN using AN 

Methods 

No. of Anchor Nodes 

10 20 30 40 50 

Proposed SA-BWP 149 153 179 192 203 

BWP 129 137 151 168 183 

ROA 103 136 147 151 163 

AO 114 111 121 134 143 

According to results, the proposed SA-BWP based NL 

approach produced better results with the highest LN. For 

illustration, the proposed method has a maximum number 

of LN of 149 with 10 anchors, whereas the minimum LNs 

acquired by the BWP, ROA, and AO systems are 129, 103, 

and 114 respectively. The proposed model achieves 153, 

179, and 192 LN for 20, 30, and 40 anchors respectively 
and these LNs of proposed strategy is highest when 

compared to other existing methods. The proposed model 

eventually achieved a maximum number of LN of 203 with 

50 anchors, whereas the AO, ROA, and BWP approaches 

obtained lowest NLNs of 143, 163, and 183 respectively. 

The analysis result is displayed in Figure 3. 

 

Figure 3: Analysis of NL for proposed and existing 

approaches 

A brief LE analysis of proposed SA-BWP based NL 

method is conducted with different anchors. Table 2 depicts 

the evaluation findings of LE for proposed and various 

present approaches. 

Table 2: Evaluation of LE using various number of AN 

Methods 

No. of Anchor Nodes 

10 20 30 40 50 

Proposed SA-BWP 0.27 0.25 0.15 0.07 0.06 

BWP 0.35 0.27 0.26 0.28 0.19 

ROA 0.4 0.35 0.35 0.29 0.26 

AO 0.57 0.62 0.4 0.37 0.34 

The forementioned LE analysis demonstrates that the 

proposed approach produced the lowest LE of 0.27 under 

10 anchors, but ROA, BWP, and AO algorithms produced 

higher LEs of 0.4, 0.35, and 0.57, respectively. 

Furthermore, the SA-BWP methodology yielded a 
minimum LE of 0.15 under 30 anchors, but the AO, BWP, 

and ROA methods achieved higher LEs of 0.4, 0.26, and 

0.35, respectively. Similarly, the BWP, AO, and ROA 

techniques have obtained a maximum LE of 0.19, 0.34, and 

0.26 respectively under 50 anchors, whereas the proposed 

approach has produced a minimum LE of 0.06. Figure 4 

demonstrates how the SA-BWP technique has produced 

better results with the least amount of LE. 

 

Figure 4: Analysis of LE 

V. CONCLUSION 

This study focused on secure node localization presenting a 

novel strategy to improve WSN performance. The crucial 

issue of resource limitations and security flaws in WSNs is 

addressed by the suggested method. The study introduced 
Self Adaptive Binary Waterwheel Plant Optimization 

method to locate secure nodes. The purpose of this stage is 

to reduce security risks from the initial deployment phase 

by including trust evaluation. The position of sensor nodes 

is efficiently and accurately determined by SA-BWP 

algorithm. The performance of proposed method is 

evaluated and compared with various existing algorithms 

such as BWP, GOA, ROA, and AO. The proposed method 

performs better in NL than other existing models. This 

study addresses significant issues of security, efficiency, 

and performance optimization while contributing innovative 

methods to WSN. Investigating the use of the suggested 
method in various WSN deployment circumstances may be 

one of the future research paths.  
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