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ABSTRACT- The main goal of CT-based triage is to 

shorten the time it takes to reach the expert opinion for 

patients in emergency situations, especially in cases of 

cranial fractures and intracranial hemorrhage. Increasing the 

performance in this regard may be possible with the use of 

artificial intelligence-supported software that may pre-scan 

the images and put them in order of urgency before the 

human triage officer is able to evaluate them. The project 

involves the development software that quickly classifies 

cases into one of two groups, urgent or non-urgent, by 

analysing the computerized tomography (CT) image of the 
brain taken without the administration of intravenous 

contrast material. In this way, more effective triage is 

aimed. The software developed for this purpose was 

observed to have high performances in two separate 

machine learning models. Additionally, a visual interface 

that allows viewing DICOM files was developed within the 

scope of the project. 

KEYWORDS- AI, DenseNet, Machine Learning, Triage, 

VGG-16  

I. INTRODUCTION 

Medical imaging encompasses a set of technologies that are 

indispensable for the detection and diagnosis of diseases 

and abnormalities. The computer-based nature of imaging 

technologies, which allows for the generation of numerical 

data, enhances their effectiveness in terms of speed and 

reliability when supported by artificial intelligence (AI). AI 

assistance plays a critical role in two main areas: computer-

aided detection (CADe) and computer-aided diagnosis 
(CADx) [1]. 

Theoretically, there is no known obstacle preventing a 

neural network implementation with sufficient complexity 

and information processing capacity from performing any 

well-defined pattern recognition task at a level that 

approaches or even surpasses the performance of a human 

expert. Significant technological advancements are 

expected in all areas that can be classified as pattern 

recognition, where human experts still demonstrate superior 

performance. In fact, the realization of these advancements 

likely awaits the resolution of surmountable technical 
issues, such as the development of accurate models for each 

area, the attainment of a higher level of hardware 

performance, or the finding of practical solutions to some 

key technical challenges related to the application of neural 

network technology (or a similar technology) in the relevant 

field. 
Artificial intelligence is revolutionizing the healthcare 

industry and its potential to automate medical triage is also 

very promising. AI algorithms can assess the severity of a 

patient’s condition much faster than a human specialist and 

enable healthcare professionals to prioritize the most critical 

examinations and treatments, allowing for more efficient 

use of all resources, especially time. Such use of automation 

will significantly reduce patient waiting times, allowing 

critically ill patients to receive immediate intervention. 

Moreover, AI-powered triage systems can help identify 

potential complications early and suggest proactive life-
saving interventions. 

The aim of this work is to develop intelligent software that 

can provide a rapid triage of brain CT scans taken in 

emergency conditions before radiologist evaluation. It is 

aimed to reduce patient morbidity and mortality by 

prioritizing emergency patients in the doctor's work list 

through this automation. With the use of this software brain 

CT scans can be analyzed beforehand and placed in the 

appropriate urgency order. It is hoped that this way, urgent 

CT scans will be read by radiologists before less urgent CT 

scans and the patient will be treated more quickly and 

effectively. 
The remainder of this paper is organized as follows: Section 

II provides general information about the domain and 

reviews the existing literature. Section III introduces the 

data source used in this study. Section IV describes the 

methodology, and Section V presents an assessment of the 

results. Finally, Section VI concludes the paper. 

II. GENERAL INFORMATION 

A. Domain Knowledge: AI in Medicine 

Artificial Intelligence is revolutionizing many fields, and 

medical imaging is one of the areas most affected by 

technological advances. The integration of AI into medical 

imaging has significant potential to increase diagnostic 

accuracy, improve the treatment process, and streamline 

healthcare operations [2] 
The most critical contribution of AI to medical imaging is 

the ability to increase diagnostic accuracy. AI technologies, 

especially those based on machine learning, can analyze 

large amounts of imaging data faster and more accurately 

than human radiologists. Studies have shown that AI can 
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match or even surpass human performance in detecting 

diseases such as breast cancer, lung cancer, and diabetic 

retinopathy [3]. For example, AI systems trained on 

mammography images have demonstrated greater 

sensitivity in detecting breast cancer, often identifying 

subtle patterns that the human eye may miss [4]. 

The use of AI also improves the workflow efficiency in 

medical imaging organizations. Traditional imaging 
workflows that involve human-based image analysis, 

reporting, and management tasks are time-consuming 

processes. AI automates many steps of these processes, 

reducing radiologists’ workload and allowing them to focus 

on more complex cases. AI-powered image analysis tools 

can pre-scan images, highlight areas of concern, and 

prioritize cases that require urgent intervention [5]. This 

automated triage capability will improve patient care by 

ensuring critical cases are addressed immediately. 

Additionally, AI can save time and significantly reduce the 

risk of human error by automating the creation of 
preliminary reports [6]. 

AI technologies are also useful in predictive analytics and 

personalized medicine. AI helps predict disease progression 

and patient outcomes by analyzing imaging data together 

with other clinical data. A well-known application is 

predicting cancer prognosis and treatment responses by 

evaluating tumor growth patterns obtained from sequential 

imaging studies [7]. This predictive capability allows for 

more personalized treatment plans tailored to the specific 

needs of individual patients for more effective treatments 

and better overall patient management. 

B. State of the Art 

Previous studies in the literature have demonstrated the 

application of machine learning techniques on CT images. 

One notable project, conducted by Titano et al. [8], 

evaluated brain computed tomography images using a 

three-dimensional convolutional neural network model. 
This study employed deep learning technology, using a 50-

layer ResNet50 architecture to address the gradient loss 

problem, a common challenge in deep learning. Although 

the accuracy results were modest (ACC = 0.55, AUC = 

0.73), simulation tests indicated that such automated 

support could significantly enhance the efficiency of triage 

processes. 

In studies that involve deep learning, two-dimensional 

image processing is much more common. In some studies, 

instead of directly processing the image, statistical models 

of the image are used. For example, Da and his colleagues 

[9] applied deep learning using the features such as energy, 
contrast, homogeneity, correlation, entropy, variance, etc. 

obtained through a statistical analysis known as GLCL 

(Gray-Level Co-occurrence Matrix), which is widely used 

due to its simplicity and information density. With this 

method, they processed brain tomography images by 

filtering them at different gray depths and reached high 

accuracy levels (the highest being at 16 gray depths). They 

also observed that within the framework of their approach, 

although the learning depth increased the network stability, 

it did not contribute to the degree of accuracy. 

Another noteworthy study is the study by Grewal et. al. [10] 
who, instead of depicting 3D brain tomography images as 

3D matrices consisting of conventional voxels (3D pixels), 

treated them as discrete but interrelated 2D matrices, as 

human experts do. This study achieved successful results 

(81.82% accuracy) despite the small number of training 

data (329 data in total) by using Densenet [11] and LSTM 

(Long-Short Term Memory) layers. This study can be 

considered as an experimental study due to the fact that it 

only targeted hemorrhage cases and that the test dataset was 

rather small (77 images). 

A more comprehensive study was conducted by 

Chilamkurthy and colleagues using a different deep 
learning architecture consisting of ResNet variants for each 

type of disorder and pixel-level labeled data in places 

[12],[13]. This study used a large amount of well-labeled 

data. In this approach, a separately labeled 2D image set for 

each investigated pathology was fed into a Convolutional 

Neural Network (CNN). Specific architectural details such 

as the number of layers, layer types (convolutional, pooling, 

fully connected), and activation functions were optimized 

for the task. The models were trained to identify multiple 

critical findings simultaneously using multitask learning 

techniques. The models were trained using a detailed 
labeled training dataset. The dataset used in the study 

consisted of 313,318 CT scans, which when multiplied by 

the number of slices contained in each scan, would create a 

dataset of millions of images. Data augmentation 

techniques such as rotation, translation and scaling were 

applied to further (artificially) increase the size (and 

diversity) of the training set, further increasing the power of 

the models. 

In this study, deep learning algorithms achieved high 

sensitivity and specificity in detecting critical cases. 

Although challenges arose when testing with different 
datasets (for instance, when sensitivity was increased for 

detecting intra-parenchymal hemorrhage, specificity 

dropped to 0.60) cases where both sensitivity and 

specificity were low simultaneously were rare. One 

example is the detection of tumors and abscesses, reported 

as mass effect, where sensitivity rose to 0.86 while 

specificity remained at 0.61. The study underscores the 

potential of these algorithms to function as diagnostic aids, 

particularly in resource-limited environments with restricted 

access to radiologists. 

Due to its fragmented design, comprising different sections 

that could each serve as standalone projects, this approach 
is hard to be compared with similar studies or adapted to 

emerging technologies. This study combines multiple tasks, 

each addressing another unique problem and offering 

distinct solutions. Additionally, approaches requiring 

detailed labeling of data incur significant costs. Given the 

millions of images (some labeled at the pixel level and 

others at the slice level) reproducing the success achieved in 

this study is difficult. Notably, the success rate has been 

lower for certain conditions, such as tumors and abscesses. 

A study conducted by Xiaohong W. Gao and colleagues in 

2016 [14] obtained encouraging results by using 2D and 3D 
CNN networks together and limiting the domain to 

Alzheimer's and lesion detection. Since the data they used 

were 2D images of just 16 or 33 slices, the effect of the 

third dimension on the system performance is limited. The 

dataset they used consists of a total of 285 (3D) images. 

The approach is interesting as it uses 3D and 2D 

convolutional networks together. Hosseini-Asl et al. [15] 

achieved similar success in Alzheimer's diagnosis using 3D 

CNN. 

Another important study was conducted by Wang and 

colleagues [16] with the aim of detecting intracranial 
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hemorrhage (ICH), a critical condition requiring immediate 

medical intervention and typically diagnosed with non-

contrast head CT scans. Diagnostic variability among 

radiologists, interpretation challenges, and increased 

workloads underscore the value of machine assistance in 

this area. The study used the 2019-RSNA Brain CT 

Hemorrhage Detection Challenge dataset, which includes 

over 25,000 CT scans. A 2D CNN was combined with two 
sequence models to detect and classify acute ICH and its 

subtypes (EDH, IPH, IVH, SAH, and SDH), employing a 

multi-label classification scheme with rigorous training and 

validation on a large dataset. High performance was 

achieved on external datasets (PhysioNet-ICH and CQ500), 

with AUC values of 0.988 for ICH and high values in 

external validation (0.964 for PhysioNet-ICH and 0.949 for 

CQ500), confirming the model's reliability. The study 

demonstrated high accuracy in detecting and classifying 

acute ICH, suggesting that the developed software could be 

a valuable aid to radiologists in clinical settings. However, 
the study focused exclusively on intracranial hemorrhage 

and relied on a large amount of labeled data. 

Another successful study aiming Intracranial Hemorrhage 

(ICH) detection was conducted by Kuo and his colleagues 

[17]. This study aimed to identify small abnormalities in 

noisy, low-contrast CT images using 4,396 head CT scans 

(1,131 positive and 3,265 negative for ICH) provided by 

UCSF and affiliated hospitals. A primary test set of 200 

head CT scans (25 positive, 175 negative), representing a 

range of scanner types and conditions, was used. 

Subsequently, a multi-class prediction was performed with 
4,766 labeled scans to identify various types of hemorrhage. 

The classification model chosen was a fully convolutional 

neural network (FCN) named PatchFCN. Supervised 

learning with pixel-level labels was carried out by 

optimizing cross-entropy loss using stochastic gradient 

descent (SGD). 

The study demonstrated an AUC of 0.99 for detecting acute 

intracranial hemorrhage (ICH), surpassing the performance 

of 2 out of 4 consulting radiologists involved in the study. 

This level of performance was achieved by applying image 

preprocessing that excluded the skull, allowing the model to 

focus on intracranial structures during the learning phase. 
High accuracy and reliable localization were attained with a 

relatively small training dataset, outperforming previous 

methods, including those based on weaker supervision 

learning and Mask R-CNN. 

Most studies on automatic diagnosis from head CT scans 

focus on intracranial hemorrhage. A study by Cortés-Ferre 

et al. [18] similarly aimed to develop an original deep 

learning model for ICH detection. The RSNA Intracranial 

Hemorrhage Challenge dataset from Kaggle, containing 

752,799 scan slices from 18,938 patients, was used. This 

dataset was divided into training (90%), validation (5%), 
and test (5%) sets, with attention to balanced class 

distribution. The study combined EfficientDet and ResNet 

architectures to create an integrated model named 

EfficientClass (EffClass). For model training, 195,050 slices 

were used, with 10,802 slices for validation and 10,014 for 

testing. The model achieved an AUC-ROC of 0.978. 

Additionally, 87.5% accuracy was reached with a 

sensitivity of 100%. In patient-based evaluation, 100% 

sensitivity and 100% accuracy were achieved using a 10% 

threshold. These values were obtained from an external test 

dataset of 55 cases, collected from two hospitals in Seville, 

Spain. This external set included 47 patients with ICH and 8 

healthy patients, presenting a serious imbalance in medical 

condition. 

III.   DATA SOURCE 

In this study a small open dataset was used from a public 
source called PhysioNet [19]. The formal name of the 

dataset is Computed Tomography Images for Intracranial 

Hemorrhage Detection and Segmentation (dataset 

identifier: ct-ich) [20]. Although the name suggests 

otherwise the dataset contains not only hemorrhage but also 

cases of various fractures. 

PhysioNet is an important resource in the biomedical 

research community and is known for its comprehensive 

collection of freely accessible datasets and software tools 

that support complex physiological studies. PhysioNet was 

established as part of the Research Resource for Complex 

Physiologic Signals, created by the Massachusetts Institute 
of Technology (MIT) and supported by the National 

Institutes of Health [19]. It has made various contributions 

to the development of fields such as artificial intelligence 

and data science, and has impacted areas such as medical 

research, education, and the development of diagnostic 

algorithms. 

The head trauma dataset was created using 82 CT scans. 

Among them, 36 scans belonged to patients diagnosed with 

the condition. Each CT scan contained approximately 30 

slices with a slice thickness of 5 mm. The mean and 

standard deviation of the patients were 27.8 and 19.5 years, 
respectively. 46 of the patients were male and 36 were 

female. Each slice of the non-contrast CT scans was 

performed by two radiologists who recorded possible 

bleeding and fractures along with their types. Labeling was 

performed by consensus among the radiologists. The 

radiologists did not have access to the patients’ clinical 

history and performed evaluations based on a rough version 

of the CT scan [20]. 

The cross-sectional images of the dataset are labeled 

according to diagnoses. In our study to ensure this 

information is easily accessible to the entire development 

team, it was planned to encode diagnostic information into 
the file names. For this purpose, a naming format has been 

designed to standardize data collected from various sources. 

The format is as follows:  

P<Patient No>_S<Cross-Section No>_D<Diagnosis No>. 

 

Figure 1: Codified Names of Actual Files 

Figure 1 shows some files with codified names. A 

challenging aspect of this labeling process has been that 

multiple diagnoses can be associated with a single image. 

For instance, cases may involve both a skull fracture and a 
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specific type of bleeding, or two or more types of bleeding 

occurring together. In such cases, a coding table that 

includes all possible diagnosis combinations would be 

required, making file naming too complex to manage 

effectively. 

This problem was resolved using basic arithmetic. In our 

method, each individual diagnostic label is assigned a 

unique prime number. Each image is then encoded with a 
value generated by multiplying the prime numbers 

corresponding to its diagnoses. This allows for a simple 

divisibility test to be performed on the file name to verify 

the presence of any specific diagnosis. The diagnostic labels 

and their corresponding prime factors are shown in Table 1. 

Table 1: Diagnostic Codification Key Prime Factors 

Diagnosis Key P.F. 

Intraventicular 2 

Intraparenchymal 3 

Subarachnoid 5 

Epidural 7 

Subdural 11 

No_Hemorrhage 13 

Fracture 17 

 

To extract all diagnostic information from a file name in 
this format, divide the number following the letter D 

(diagnosis) into its prime factors. For example, an image 

labeled D221 indicates a non-bleeding fracture, as 221 = 17 

× 13 (where 17 is the prime factor for 'fracture' and 13 

represents 'no bleeding'). Similarly, D51 indicates a 

'fracture' with 'intraparenchymal bleeding' as 51 = 17 × 3. 

IV.   METHOD 

A. The Software Platform 

Software development was conducted using the Anaconda 

package and the Python programming language. Python’s 

popularity in machine learning is closely tied to its 

flexibility, extensive library ecosystem, and ease of 

learning. With its user-friendly syntax, Python also 

facilitates rapid prototyping and testing. Additionally, 

powerful libraries and frameworks like TensorFlow, Keras, 
PyTorch, and scikit-learn enable the efficient development 

of machine learning models. 

One of the important stages of the project is to provide the 

function of accessing and displaying DICOM files, which is 

a common radiology imaging format and can contain large 

amounts of data. It was necessary to quickly verify that 

DICOM content was interpreted correctly and converted 

into numeric information. For this purpose, a visual 

application called Metrik-G was developed. This 

application allows medical images, which by their nature 

contain a large amount of detail, to be displayed through a 
narrow contrast window in accordance with current 

computer monitor technology, and to adjust the width of 

this contrast window and its position over the entire 

illumination spectrum as desired. This image processing 

technique is called windowing. 

The contrast resolution of medical imaging devices far 

exceeds both the brightness spectrum that monitors can 

display and the capabilities of human vision. This is 

particularly true for computed tomography (CT) devices, 

which use high-frequency radiation in imaging. Regardless 

of the imaging technique used, it is generally impossible to 

view all details in a typical CT scan simultaneously. As a 

result, the examination of medical images necessarily 

involves image processing techniques. One common 

technique is windowing, which is used to obtain an image 

viewable on a monitor. Windowing involves selecting a sub-

range of the brightness that falls within the monitor's 

displayable range, and mapping only the pixels within this 

range to values displayable gray-scale values. In other 
words, a narrow brightness 'window' is chosen from a much 

larger brightness range, and only this range is displayed. 

Pixels outside this window appear fully white if they are 

brighter than the range, and fully black if they are darker. 

In medical imaging, it is critical to adjust the windowing 

process to the physical properties of the tissue to be imaged. 

Different tissues absorb different amounts of radiation, 

resulting in varying density values in the image. Without 

proper windowing, it will be impossible to distinguish 

subtle differences in tissue density. 

There are two parameters to the windowing process: 
Window Width (WW) and Window Level (WL) [21]. By 

adjusting the window width and level, medical personnel 

can customize the image display to highlight specific areas 

of interest. 

Window Width (WW): This parameter determines the range 

of intensity values displayed in the image. A narrow 

window width increases contrast for structures within a 

certain intensity range, but may result in loss of detail in 

areas outside this range. These will be painted either 

completely black or completely white, effectively removing 

them from the image. 
Window Level (WL): The location of the window over the 

entire brightness spectrum. Also known as the window 

center, this parameter locates the midpoint of the intensity 

range to be displayed. Adjusting the window level shifts the 

range of values displayed up or down the intensity scale. 

By optimizing contrast and brightness with windowing, the 

differences between tissues with similar densities can be 

better separated. Improved visualization achieved with the 

right parameters helps radiologists and clinicians make 

more accurate diagnoses and assessments. For example, the 

Lung window (WW=1500, WL=-600) used in chest CT 

scanning is used to increase the visibility of the lung 
parenchyma. The Mediastinum window (WW=350, WL=50) 

that can be used on the same scan is used to better visualize 

the mediastinum structures and blood vessels. There are 

four different windows commonly used in head images: 

Brain Window (WW=80-100, WL=40), Bone Window 

(WW=2500-4000, WL=300-500), Subdural Window 

(WW=200-300, WL=50-100) and Stroke Window (WW=8-

40, WL=32-40). 

B. DenseNet-121  

DenseNet-121 (Densely Connected Convolutional 

Networks) is a type of Convolutional Neural Network 

(CNN) architecture designed to improve the flow of 

information and gradients throughout the network by 

connecting each layer to other layers in a feedforward 

manner. [11] In DenseNet-121, each layer takes input from 

all previous layers and passes its own feature maps to all 

subsequent layers, which improves feature reuse and 
reduces the number of parameters compared to traditional 

CNNs. This architecture helps alleviate the vanishing 

gradient problem, provides more efficient training, and 

achieves high performance in image classification tasks. 
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C. VGG-16  

Developed by the Visual Geometry Group (VGG) at the 
University of Oxford, VGG-16 is a Convolutional Neural 

Network (CNN) architecture that achieves significant 

performance in image classification tasks. It consists of 16 

weight layers: 13 convolutional layers and 3 fully connected 

layers, totaling approximately 138 million parameters. The 

architecture uses small 3x3 convolutional filters that are 

stacked to increase the depth of the network, allowing it to 

learn complex features. VGG-16 is known for its simplicity 

and efficiency and has played a significant role in the 

advancement of deep learning research in computer vision 

[22]. 

D. ResNet50 and ResNet152V2  

ResNet-50 is a Convolutional Neural Network (CNN) 

architecture that is part of the ResNet (Residual Network) 

family. Developed by Kaiming He et al., ResNet-50 

contains 50 layers and uses the deep residual learning 

framework. The key feature of ResNet is the introduction of 
residual blocks, where shortcut connections (skip 

connections) skip one or more layers. This design helps to 

cope with the vanishing gradient problem, enabling very 

deep networks to be trained. ResNet-50, like other ResNet 

versions, has shown high performance in image 

classification tasks and has been widely used for various 

computer vision applications [23]. 

ResNet-152V2 is an advanced version of the original 

ResNet (Residual Network) architecture, specifically 

designed to improve the training of very deep neural 

networks. It contains 152 layers and uses residual learning, 
where shortcut connections are used to skip one or more 

layers. The “V2” version includes improvements such as 

pre-activation residual blocks, which further improve the 

training process by normalizing the input before applying 

the activation function. ResNet-152V2 demonstrates good 

performance in image classification and other computer 

vision tasks [23]. 

E. Xception  

Xception is a Convolutional Neural Network architecture 

that stands for "Extreme Inception". It was developed by 

François Chollet and is based on the Inception architecture, 

but with significant changes. In Xception, instead of the 

standard Inception modules, there are depth-separable 

convolutions which is a type of factorized convolution. This 

change reduces the number of parameters and 

computational cost while maintaining or improving 

performance. Xception consists of 36 convolutional layers 

that form the feature extraction base of the network, 
followed by a fully connected layer for classification. This 

architecture is known for its efficiency and effectiveness in 

image classification and other computer vision tasks [24]. 

V. ASSESSMENT OF RESULTS 

A. Performance Metrics  

Performance evaluation of AI-based classification models is 

critical to ensure reliability and effectiveness in various 

applications, especially in sensitive areas such as healthcare 

and autonomous driving.  

The most basic tool used to evaluate the performance of 

classification models is the complexity matrix. The 

complexity matrix consists of four basic terms: True 

Positives (TP), True Negatives (TN), False Positives (FP), 

and False Negatives (FN). These terms facilitate the 

definition of various performance metrics that provide 

different insights into the predictive capabilities of the 

model [25]. In the medical domain, True Positives (TP) 

occur when a test correctly identifies patients who have a 

disease. True Negatives (TN) happen when the test 

correctly identifies healthy individuals without the disease. 

False Positives (FP) are cases where the test incorrectly 
indicates disease in healthy individuals. False Negatives 

(FN) occur when the test fails to detect the disease in 

patients who actually have it. From these values, several 

statistical metrics can be derived to quantify the success of 

the tests: 

Precision: It is also known as Positive Predictive Value. 

It is defined as the ratio of true positive predictions to the 

total number of positive predictions made by the model 

(i.e., TP / (TP + FP)). Precision indicates the proportion 

of positive diagnoses that are actually correct. High 

precision is especially important in scenarios such as 
disease diagnosis, where the cost of false positives is 

high [26]. If this value is low, there is a risk that an 

expensive treatment or examination will be applied to a 

healthy person when it is not necessary. 

Accuracy: The ratio of correctly predicted examples 

(both true positives and true negatives) to the total 

number of examples (i.e. (TP + TN) / (TP + TN + FP + 

FN)). Accuracy provides an overall measure of how 

often the classifier is correct, but can be misleading with 

imbalanced datasets where one class heavily dominates 

[27]. 
Sensitivity: Also known as Recall or True Positive Rate. 

It is defined as the ratio of true positive predictions to the 

total number of true positives (i.e. TP/(TP+FN)). 

Sensitivity measures the ability of the model to identify 

all relevant samples. High sensitivity is very important in 

situations where missing a positive sample (false 

negative) has serious consequences, such as in cancer 

screening [28]. 

F1-score: Metrics known as F-Metrics, especially the 

F1-score, provide a harmonic mean of precision and 

accuracy, creating a single measure that takes both 

concerns into account and balances them (F1 = 2 * 
(Precision * Precision) / (Precision + Precision)). The 

F1-score is particularly useful when the balance between 

precision and accuracy is critical, and provides a more 

comprehensive assessment of model performance in 

scenarios where both false positives and false negatives 

are important. Other F-metrics calculate the harmonic 

mean of these two measures with different weights 

(weighted harmonic mean). In this way, it is possible to 

prioritize precision over precision if desired. 

B. Initial Slice-based Performance  

In the initial experiments, slice based labeling was 

disregarded at the learning phase, though performance 

evaluations were conducted entirely on a slice basis. After 

fine-tuning, training was performed with 20 epochs on the 

DenseNet-121, VGG-16, and ResNet152V2 models, 

followed by completion of training with 100 epochs.  

The evaluation of the algorithms has a two-fold nature. The 
first aspect is assessing the discriminatory power each 

algorithm achieves in classifying head CT scans. This type 

of evaluation involves measuring the algorithms' (or 

models') ability to classify images and is based on a cross-
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sectional approach, utilizing a large dataset of 1,047 

images. However, such a comparison serves primarily to 

benchmark theoretical image classification algorithms and 

has limited practical benefit. In real medical applications, it 

is not individual cross-sections that need classification, but 

rather the patients as a whole. Therefore, the evaluation that 

holds true importance is the one conducted on a patient 

(case) basis. 
On the other hand, because case-by-case classification 

requires more detailed experimentation, it is necessary first 

to identify models that show promise in evaluating the 

images. Table 2 presents a comparison of models produced 

by different architectures. This approach allows the 

effective algorithms and architectures to be selected 

initially, followed by more detailed examination. 

Table 2: Slice Image Classification Performances 

Model Prec. Acc. Rec. F1 

DenseNet-121 0.593 0.784 0.526 0.557 

VGG-16 0.569 0.779 0.599 0.583 

ResNet152 0 0.741 0 0 

Xception 0 0.741 0 0 

ResNet50 0.527 0.760 0.711 0.605 

VGG-16/S 0.540 0.899 0.530 0.535 

DenseNet-
121/S 

0.395 0.860 0.522 0.449 

 

Seven models are compared in Table 2: DenseNet-121, 
VGG-16, ResNet152, Xception, ResNet50, VGG-16/S, and 

DenseNet-121/S; in terms of Precision, Accuracy, Recall, 

and F1 metrics. VGG-16/S and DenseNet-121/S are slice-

based trained versions of the respective models 

ResNet, VGG-16/S, and DenseNet-121/S performed well. In 

contrast, the ResNet152 and Xception algorithms failed to 

classify any images as positive (patient), rendering their 

classifications ineffective, at least for this small dataset. 

Consequently, the obtained accuracy values for these 

models are not meaningful. 

C. Case-based Performance  

Case-based evaluation aims to analyze the distribution of 

slice classes within each scan and proceed to case 

classification based on these results. There are several 

possible approaches to achieve this challenge. Following a 

brief review, it became evident that using a simple threshold 

value for slice classifications is an effective and 
straightforward method. For larger datasets or larger 

DICOM files with more slices per scan, alternative methods 

or algorithms could be developed. Under current conditions, 

however, the threshold method appears sufficient. This 

study, conducted on slice-labeled versions of the VGG-16 

and DenseNet-121 models, continued by establishing three 

threshold values for each algorithm. 

Table 3: Distribution of Slice Classes Over Scans 

Model Real 
Pos. 

Slices 

Neg. 

Slices 

Pos. 

Ratio 

% 

VGG-16/S 

Unhealthy 5.55 4.91 49.24 

Healthy 1.79 30.35 5.57 

Total 2.82 23.35 17.58 

DenseNet-

121/S 

Unhealthy 5.45 5.00 55.64 

Healthy 3.17 29.10 9.76 

Total 3.80 22.47 22.38 

In Table 3, the two most successful architectures (VGG-

16/S and DenseNet-121/S) are compared based on the 

average values of slices per scan. All values in the table 

represent averages. Separate rows show the averages for 

unhealthy individuals, healthy individuals, and all scans 

combined. In the first column, the average number of slices 

classified as positive (marked by algorithm as unhealthy) is 

presented as three separate averages, as noted. The second 
column provides the averages for slices classified as 

negative (marked by algorithm as healthy) in the same 

format. The last column displays the average positive 

section ratios as percentages. It is important to note that 

these percentages represent slice ratios per scan, averaged 

across all scans, so the values for patients and healthy 

individuals may not add up to 100%. Additionally, the sum 

of the Pos. Slice Count and Neg. Slice Count does not equal 

the total slice count per scan, as these values are the average 

counts within each scan. 

The dataset contains a total of 1419 cross-sectional images 
of healthy views and 1395 cross-sectional images for 

pathologies. The data is divided into 70% for training and 

30% for testing, ensuring that no cross-sectional images 

from a patient in the test set are present in the training set. 

In other words, all images from a single patient are included 

entirely in either the training set or the test set. This 

separation is crucial to prevent the learning algorithms from 

inadvertently identifying patients based on personal 

physiological features, rather than diagnosing the disease. 

Without this separation, artificial intelligence could attempt 

to recognize patients individually by using subtle traits, 
such as bone thickness or unique bone angles, as shortcuts. 

Although this could yield misleadingly high performance, 

the model would likely fail to generalize when encountering 

new patients. To avoid this issue, all cross-sectional images 

from each patient are assigned exclusively to either the 

training or the test set. 

Table 4: Case Classification Performances 

Model Prec. Acc. Rec. F1 

VGG-16/S (20%) 0.800 0.875 0.727 0.762 

DenseNet-121/S (10%) 0.524 0.750 1.000 0.688 

VGG-16/S (30%) 1.000 0.900 0.636 0.778 

DenseNet-121/S (20%) 0.667 0.825 0.727 0.696 

VGG-16/S (50%) 1.000 0.875 0.545 0.706 

DenseNet-121/S (10%) 1.000 0.900 0.636 0.778 

 

In Table 4, VGG-16 and DenseNet-121 models trained with 

only slice-based data were evaluated using different 

threshold values on performance metrics. The leap from 

slice-based evaluation to scan-based evaluation is 

performed using a very simple method. The number of 

slices evaluated as positive for each patient is compared 

with a certain threshold value, and if the patient exceeds 

this value, they are classified as positive (unhealthy), and if 

they remain below, they are classified as negative (healthy). 

Since each scan consists of a different number of slices, a 
healthy borderline can only be expressed as a fraction. 

These rates are given as percentage values in the table. For 

VGG-16, the 20%, 30% and 50% border values, and for 

DenseNet-121, the 10%, 20% and 50% values were found 

to be significant in terms of effective discrimination. 

Using this method, case-based performance evaluation 

yields improved values compared to slice-based evaluation. 

The highest accuracy (90%) is achieved by the DenseNet-
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121 model with a 50% threshold and the VGG-16 model 

with a 30% threshold. These two configurations also 

produced the best F1 metric values. If sensitivity (recall) is 

prioritized, DenseNet-121 with a 10% threshold can be 

selected. 

In automated diagnosis tasks, the cost of missing a sick 

individual (false negative) is typically much higher than 

misidentifying a healthy individual as sick (false positive). 
Therefore, prioritizing maximum sensitivity with an 

acceptable level of accuracy can be considered as a rational 

policy, particularly when the primary goal is triage. 

Among similar studies, those that achieved better 

performance results generally focused on a limited 

diagnostic area, such as intracranial hemorrhage (brain 

hemorrhage and related disorders). In contrast, the study by 

Chilamkurthy et al. [12],[13], which addressed a broader 

diagnostic scope, is not fully comparable because it applied 

different solutions to each disorder, achieving high 

performance in some cases but not in others. Additionally, 
their study used a very large, detailed dataset with separate 

labeling for each diagnostic purpose. Our requirements and 

approach differ: we developed a faster, lighter classification 

software for computer-aided rapid triage, using a smaller 

dataset. Despite this limitation, we demonstrated that 100% 

precision could be achieved with 90% accuracy. This 

performance could potentially be improved with access to 

larger, labeled datasets. 

VI. CONCLUSION 

As our main purpose is optimizing the triage order, all the 

methods in Table 3 appear to be sufficiently effective. It 

should be noted, that these results were obtained using a 

very small dataset. With more slice-labeled data, the 

learning process would likely become more efficient, and 

performance metrics would further improve. Additionally, 

the current methods have been tested on scans with slice 

counts ranging from 4 to 39, though CT scans typically 

contain more slices. 

In the experiments, DenseNet-121 and VGG-16 

architectures have shown high performance with slice-based 

labeled data and certain limit values. These results were 
obtained with small amounts of unbalanced data, and data 

acquisition studies are ongoing for further improvements. 

Integrating machine learning algorithms such as VGG-16 

and DenseNet-121 into the analysis of CT scans, along with 

appropriate cross-sectional assessment methods, has the 

potential to significantly improve the medical triage 

process. Machine learning models can rapidly and 

successfully identify and prioritize critical conditions from 

CT images, thereby accelerating diagnostic timelines and 

improving patient management. Advanced automated 

analysis capabilities will not only facilitate workflow 
efficiency in emergency situations, but will also ensure that 

patients receive timely and appropriate care according to the 

severity of their condition. As a result, it is believed that the 

use of machine learning in CT scan analysis will further 

advance emergency medical services by providing more 

precise and efficient patient assessments. This project is a 

useful and successful step in this direction. 

When moving from the section-based classification stage to 

the case-based classification level, using methods other than 

the cut-off value may be one of the topics to be investigated 

in the future. There are many complex algorithms that can 

be considered, and creating and competing them may yield 

better results. 
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