
International Journal of Innovative Research in Computer Science and Technology (IJIRCST)
 ISSN (Online): 2347-5552, Volume-13, Issue-1, January 2025

https://doi.org/10.55524/ijircst.2025.13.1.1
Article ID IRP-1576, Pages 1-11

http://www.ijircst.org

Innovative Research Publication 1

Development of an AI-Driven Model for Advancing Software

Engineering Practices

Aylin Güzel1 , and Ahmet Egesoy2

1 Research Scholar, Department of Computer Engineering, Ege University, Izmir, Turkiye
2 Assistant Professor, Department of Computer Engineering, Ege University, Izmir, Turkiye

Correspondence should be addressed to Ahmet Egesoy;

 Received 11 November 2024; Revised 26 November 2024; Accepted 11 December 2024

Copyright © 2024 Made Ahmet Egesoy et al. This is an open-access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- This work introduces the Fuzzy

Specification Tree Model (FST), a general-purpose

framework designed to enhance AI-assisted software

engineering. The paper begins by examining the intricate

interplay between software engineering and artificial

intelligence (AI), emphasizing how AI technologies are

reshaping software development methodologies. Building

on a foundation of requirements-driven approaches, the

study presents a novel adaptation of classical feature

modelling to create a versatile, fuzzy logic-based

requirements specification model. This model not only
facilitates the definition of functionalities for partially

completed software but also supports formal methods for

project management, version control, and reuse. By

employing separate Fuzzy Specification Trees for

requirements and the current state of a project, developers

gain a dynamic perspective on project completeness and can

leverage AI assistance to prioritize tasks, ensuring efficient

progression toward project completion with minimal effort.

KEYWORDS- AI, Software Engineering, Requirements

Management, Fuzzy Logic.

I. INTRODUCTION

As software systems grow increasingly complex, traditional

methodologies encounter significant limitations in terms of

scalability and adaptability. The term "software crisis" is

commonly used as an umbrella phrase to describe the

persistent and ill-structured challenges associated with

software development processes. This crisis is often

characterized by the ongoing difficulty in meeting the ever-
growing demands for software. Addressing these demands

is the overarching goal of software engineering.

Artificial intelligence (AI) and formal methods are

revolutionizing software engineering by addressing many of

the challenges posed by the software crisis. AI techniques,

such as machine learning and natural language processing,

enable smarter automation of tasks like requirements

analysis, code generation, testing, and debugging, reducing

human error and increasing efficiency. Meanwhile, formal

methods bring mathematical rigor to software development,

allowing for precise specification, verification, and
validation of software systems. Together, these approaches

enhance the scalability and reliability of software

engineering processes, enabling the creation of more

complex and adaptive systems while maintaining high

levels of quality.
The Feature-Oriented Domain Analysis (FODA) method

was created by Dr. Kyo C. Kang and his colleagues at the

Software Engineering Institute (SEI) of Carnegie Mellon

University in 1990. They documented their work in the

report titled "Feature-Oriented Domain Analysis (FODA)

Feasibility Study”, [1] which introduced a systematic

approach to domain analysis by identifying common and

variable features within a software domain. It is our view

that a feature-driven point of view fostered by the use of AI

can provide a solution for the problems of software

engineering.
Our proposal employs a fuzzy version of the FODA tree

that is more in line with project management challenges.

The remainder of this paper is organized as follows: Section

II provides an overview of the role of AI in software

engineering. Section III discusses the advantages of a

requirements-based approach. Section IV presents the

proposed model which is an innovative diagram type (and

data structure) called Fuzzy Specification Tree Model.

Finally, Section V concludes the paper.

II. AI IN SOFTWARE ENGINEERING

Artificial intelligence (AI) is a branch of computer science

focused on creating intelligent systems capable of acting

and communicating in ways that resemble human behavior.

AI enables computer systems to explore and perform tasks

in domains traditionally driven by human labor. These

systems operate with high accuracy, reduce operational

costs, and enhance production processes, making them

more efficient and manageable. Consequently, it is expected

that AI technologies will bring comparable advancements

and efficiencies to the field of software engineering.
Determining what qualifies as intelligence is inherently

challenging, particularly in a domain already regarded as

ill-structured, even for humans. Any technique that

demonstrably aids in managing the inherent complexity of

software systems by offering developers valuable insights

or assistance can justifiably be classified as AI.

AI has a wide range of applications in software engineering.

The following sub-sections will explore several key areas

where AI can be utilized, including cost estimation, fault

prediction, test estimation, testing, software maintenance,

reuse, quality prediction, source code summarization, and

the detection of design and code bad smells.

https://doi.org/10.55524/ijircst.2025.13.1.13
http://www.ijircst.org/
https://orcid.org/0000-0003-0586-5583
https://orcid.org/0000-0002-5050-5547

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 2

A. Cost Estimation

Software cost estimation is the approximate estimation of
the project cost prior to the development process. Models

used for cost estimation use mathematical algorithms or

parametric equations. There are three main approaches:

Empirical, Heuristic and Analytical [2].

The Empirical Approach uses data previously collected

from a project, as well as some former estimates. These

methods rely on historical project data and statistical

models to estimate costs. This is a very data-driven

approach and requires a significant amount of historical

data for calibration. It uses regression or machine learning

techniques to find relationships between project attributes
(e.g., lines of code, team size) and cost.

The Heuristic Approach relies on expert judgment and rule-

of-thumb techniques derived from past experience rather

than rigorous data analysis. These techniques are flexible

and intuitive when historical data is sparse or inconsistent.

However, they rely heavily on expert knowledge and

subjective judgment. This approach is useful in novel or

poorly understood domains where data is unavailable. It is

also adaptable to changing conditions. However, it can also

be quite subjective and prone to bias.

The analytical approach relies on mathematical models and

formal frameworks to estimate costs based on project-
specific parameters. This method typically involves

breaking a task into sub-parts and building estimations

using principles or formal algorithms, often through

deterministic calculations. It incorporates factors such as

complexity, size, and team productivity. While this

approach provides structured and objective results, it

requires detailed upfront information about the project and

can be rigid, making it less adaptable to changes during the

project.

As a result, the cost estimation process delvers the

estimation of the size of the software, the effort required,
and the overall cost [2].

B. Fault Prediction

AI-based fault prediction is one of many branches being

explored in software engineering, involving diverse

techniques and applications across various domains to

improve the identification and management of software
faults. Classification techniques are widely applied in

software fault prediction, aiming to identify faulty software

modules using software metrics. Support Vector Machines

(SVMs) are often employed to identify infeasible GUI test

cases and to prioritize test cases in system-level testing,

particularly in black-box testing scenarios where code

access is unavailable. Logistic regression, Random Forest,

AdaBoost, and bagging are utilized to optimize testing

efforts by predicting change-prone components.

Artificial Neural Networks, Support Vector Machines, and

Linear Regression are used for planning and scheduling
testing activities. Genetic Algorithms are applied for test

data generation [3]. The K-Nearest Neighbor (KNN)

algorithm is used to identify coincidentally correct test

cases.

Natural Language Processing (NLP) techniques are

employed for multiple purposes, including test case

prioritization, predicting manual test case failures,

generating test cases, creating test cases from software

requirements, automatically documenting unit test cases,

and detecting duplicate defect reports.

C. Test Estimation

Test estimation is a technique which approximates how
long a task would take to complete. Estimating effort for the

test is one of the important tasks in test management. Test

Effort Estimation is the process of forecasting how much

effort is required to develop or maintain a software

application. There are four methods for estimating the

effort: Expert Estimation, Top-down Estimation, Bottom-up

estimation and Parametric Estimation.

Expert estimation is a technique in which an expert

estimates how much effort a project requires [4]. Expert

estimation is a widely used technique in automated software

test estimation, relying on the knowledge and experience of
domain experts to predict the effort, cost, or time required

for testing activities. Unlike algorithmic approaches, expert

estimation leverages human intuition and contextual

understanding, allowing it to accommodate complex,

ambiguous, or project-specific factors that may not be

easily quantifiable. Expert estimation is not inherently

automated, as it fundamentally relies on human judgment

and expertise. However, aspects of the process can be

augmented or facilitated by automation. While the core

predictions are provided by experts, automation can assist

in various ways such as data retrieval and analysis, expert

collaboration, and bias mitigation.
Top down estimation technique use experience from the

past to make estimates for the future. The technique

involves deriving high-level estimates based on the overall

scope of a project and breaking it into smaller components.

The advantage of using top down estimation methods is that

they are basically more objective and repeatable than expert

estimation. This task presents partial feasibility for

automation. Automation in top-down estimation is feasible

for supporting activities like data retrieval, initial estimate

generation, and scenario modeling. However, achieving

fully automated top-down estimation is currently unrealistic
because of the need for strategic judgment, abstract

reasoning, and adaptability.

Bottom-up estimation methods involve analyzing the

specific activities required to achieve a project's objectives

[4]. Each task is broken down into smaller components,

typically requiring less than two weeks of effort, to ensure a

manageable level of detail. Individual estimates are then

assigned to each component, and these are aggregated to

produce the overall project estimate. The primary advantage

of bottom-up estimation is its clarity and transparency, as

the detailed breakdown makes the estimates more

comprehensible and justifiable compared to high-level
expert estimates.

 Parametric estimation methods utilize algorithms to

generate project estimates based on specific inputs, such as

the required functionality and expected quality [4]. These

algorithms apply predefined computational steps to produce

an estimate exclusively from the provided inputs. The key

advantage of parametric estimation is its objectivity,

offering a systematic and data-driven approach that can

deliver highly reliable results. However, this method is

typically more complex and time-intensive compared to

other estimation techniques, which can be a drawback in
scenarios requiring rapid or simplified estimation processes.

D. Testing

Artificial Intelligence plays a pivotal role in modern

software testing, improving accuracy and saving time [5].

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 3

Techniques such as machine learning, deep learning, and

natural language processing are integral to enhancing

various aspects of the testing process. AI is increasingly

applied to analyze and optimize code during software

testing.

Artificial intelligence is particularly well-suited for black

box testing due to its ability to analyze patterns, predict

outcomes, and adapt to varying inputs without requiring
knowledge of the internal system structure.

Black box testing is a method where the system is tested

without any prior knowledge of its internal architecture or

source code. Testers interact with the system by providing

inputs and observing the outputs to evaluate its

functionality. This approach helps identify issues related to

usability, reliability, and system behavior in response to

both expected and unexpected user actions.

By leveraging AI algorithms, black box testing can

efficiently handle complex testing scenarios, automate

repetitive tasks, and uncover hidden issues that might be
missed through traditional methods. This compatibility

makes black box testing a prime candidate for incorporating

AI-driven techniques to enhance testing accuracy and

reliability.

In black box testing, advanced algorithms are utilized to

improve efficiency and outcomes. For instance:

 C4.5, a decision tree algorithm, is employed to support

decision-making in black box testing.

 Huber Regression, Support Vector Regression (SVR),

and multi-layer perceptron are used to predict test coverage

in automated testing.

 Hybrid Genetic Algorithms (HGA) automate GUI

testing.

 K-Means Clustering is applied to classify test cases,

enhancing the effectiveness of regression testing.

These AI-driven techniques demonstrate the transformative

impact of AI in advancing the scope and precision of

software testing practices.

E. Software Maintenance

AI plays a significant role in the maintenance of software.

Predictive maintenance is one of the most prominent

techniques applied in conjunction with AI-driven

development methods. The primary goal of predictive

maintenance is to anticipate system failures and issue

timely warnings, enabling preventive actions to avoid

disruptions [6]. This approach helps identify anomalies and

potential defects in processes, allowing corrective measures

before these issues escalate into critical failures. Machine
learning techniques, including supervised and unsupervised

learning, are commonly utilized to power predictive

maintenance.

Predictive maintenance uses various algorithms to analyze

large volumes of operational data, identifying patterns and

trends that signal potential failures. This proactive approach

not only minimizes downtime but also reduces maintenance

costs by addressing issues early.

F. Reuse

Reuse refers to the application of previously developed

features, concepts, or objects in new situations, enhancing

efficiency and innovation. Reusability, on the other hand,

describes the ability of these components to be effectively

adapted for new applications. In the context of software

development, reuse significantly improves productivity,

reduces time and costs, enhances reliability, and simplifies

maintenance [7].

Various data mining techniques, such as knowledge

discovery, classification, and clustering, play a crucial role

in the domain of software reuse. Classification methods are

employed to identify reusable software components, while

clustering algorithms predict the reusability of software

elements by grouping similar components. Additionally,
methods like neural networks and classification algorithms

are applied to further refine the identification of reusable

components.

Reusability not only optimizes development time and costs

but also improves the reliability and overall quality of

software systems. In classification-based approaches,

software components are categorized using two key

methodologies: Coverage-based Classification and

Proximity-based Classification.

In the Coverage-based Classification technique, operations

are evaluated for their degree of generality and adaptability.
In the Proximity-based Classification technique, the

similarity between operations is measured by a proximity

value (or similarity distance). A smaller proximity value

indicates greater similarity between processes, suggesting a

higher potential for reuse.

By leveraging these classification strategies, organizations

can systematically identify and integrate reusable

components, leading to more efficient and reliable software

development practices.

G. Quality Prediction

Software quality prediction involves identifying software

modules that may present potential quality issues, helping

to ensure overall system reliability and stability. Techniques

such as Bayesian belief networks, neural networks, fuzzy

logic, support vector machines, expectation-maximization

algorithms, and case-based reasoning are widely used in

software quality estimation [8]. Software quality is defined
by compliance with requirements and the absence of

defects, with reliability and stability being critical criteria.

Accurately predicting these attributes simplifies the process

of assessing software quality.

Neural networks are a commonly used method for software

quality prediction. In this approach, a three-layer feed-

forward neural network is trained using historical data.

Once trained, clustering genetic algorithms are applied to

extract intelligible rules from the network. These rule sets

are then used to identify error-prone software modules,

enabling the classification of modules as faulty or non-

faulty.
Fuzzy logic offers another method for software quality

estimation. This technique either fuzzifies an existing rule-

based estimation model or creates a new fuzzy model using

software metrics. The Sugeno inferencing method is

frequently employed to predict the number of faults in the

training data, providing an adaptable and granular approach

to quality prediction.

By leveraging these advanced techniques, software quality

prediction helps developers proactively address potential

defects, ensuring more stable, reliable, and high-quality

software systems. Each approach provides unique
advantages, from the interpretability of fuzzy logic models

to the powerful pattern recognition capabilities of neural

networks, making them valuable tools for improving

software quality.

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 4

H. Detecting Bad Smells in Design and Coding

In software engineering, code smells refer to patterns in the
code that, while not necessarily incorrect, indicate deeper

problems in the software’s structure, such as poor design or

maintainability issues. These issues if left unaddressed, can

lead to more significant problems.

Martin Fowler introduced the concept of bad smells in

software development, referring to indicators of potential

issues within the codebase [9]. A bad smell arises when

developers make incorrect analyses of system requirements,

take poor decisions regarding system design, or disregard

fundamental principles of software development.

Additionally, it may occur when developers write overly
complex, hard-to-read, or poorly comprehensible code to

address immediate needs without considering long-term

maintainability.

In essence, bad smells in code result from errors made

during the software development process whether in

analysis, decision-making, or implementation. These smells

act as warning signs that a part of the code might require

refactoring or further scrutiny to avoid deeper issues.

Common scenarios where bad smells appear include:

 Ignoring fundamental software development principles,

 Faulty or incomplete analysis,

 Poor decision-making,

 Writing overly complex or unintelligible code,

 Incorrectly integrating new modules into the system,

 Misjudging the requirements or goals of the system.

By recognizing and addressing these bad smells early,

developers can improve the code's readability,

maintainability, and overall quality, ensuring a more robust

and scalable software product. Bad smells are indications of

potential problems in the system. Also, design problems in

the code are seen as a bad smell.

Common bad smells in code include:

Duplicated Code: Identical or highly similar code
structures appearing in multiple locations. Duplicated code

should be consolidated to avoid redundancy and simplify
maintenance.

Long Methods: Methods that attempt to perform too many

tasks, making them harder to understand and reducing
functionality. The **Extract Method** approach can be

applied to break these methods into smaller, more focused
ones.

God Class: A class that contains an excessive amount of

information and responsibilities, leading to high complexity

and redundancy. Refactoring techniques such as Extract
Class or Extract Subclass can redistribute responsibilities
and streamline the class.

Long Parameter Lists: Methods or functions with

unnecessarily long parameter lists reduce clarity and

usability. These should be shortened by using objects or

grouping related parameters, improving code readability
and simplicity.

Switch Statements: Excessive use of switch statements can

make code harder to maintain and extend. Alternative

approaches, such as polymorphism or strategy patterns,
should be employed to reduce their frequency.

Comments: While comments can be helpful for

documentation, they are often used to obscure bad code

practices instead of addressing underlying issues. Over-

reliance on comments to explain poorly written code is
itself considered a bad smell.

Lazy Classes: Classes that do little or no meaningful work

should be removed. Eliminating lazy classes reduces code

size and improves clarity.

By addressing these bad smells through refactoring,

developers can create cleaner, more efficient, and easier-to-

maintain codebases. This process not only enhances the

software’s performance and quality but also ensures better

scalability and adaptability for future requirements.

Bad smells in code can be detected either manually or

through automated tools, which enhance the process by
leveraging metric-based and visualization-assisted analysis.

These tools assist developers in identifying, visualizing, and

analyzing various code smells, making the detection process

more efficient and systematic [10], [11], [12]. DECOR [13]

is a tool commonly used for detecting spaghetti code, a type

of code smell characterized by poor readability and tangled

structure. Spaghetti code arises when the flow of the code

becomes overly complex, making it difficult to follow or

maintain. DECOR helps reduce the overall costs of

development and maintenance by providing effective
detection of these issues.

JDeodorant [14] is another tool designed to automatically

detect Type-Checking code smells in Java source code. It

identifies bad smells and suggests appropriate refactoring

techniques.

Bad smells in code also help identify design problems

within software systems, enabling developers to address
underlying architectural issues. Tools like JSpIRIT [15]

allow developers to define new detection rules for code

anomalies and prioritize the identified smells. Code

anomalies indicate design flaws in the source code and

should be eliminated to enhance overall system quality. The

detection process begins with scanning the code, followed

by the automated identification of smells using predefined

rules. Developers can then prioritize the identified smells

based on customizable criteria, ensuring that the most
critical issues are addressed first.

JSNose [16] is a JavaScript-specific code smell detection

technique that uses a metric-based approach combining

static and dynamic analysis to identify smells in client-side

code. JavaScript, being a highly flexible scripting language

for interactive web applications, can exhibit various code

anomalies such as lazy objects, long methods/functions,

closure smells (nested functions), and excessive use of

global variables. By detecting these anomalies, JSNose
improves the maintainability and quality of JavaScript
codebases.

InCode [17], implemented within the Eclipse environment,

is another tool for code smell detection. It identifies four

common bad smells: Feature Envy, God Class, Duplicate
Code, and Data Class. InCode uses a metrics-based

approach to detect anomalies, providing actionable insights

to improve code structure.

Machine learning algorithms are frequently employed to

analyze large codebases and identify patterns associated

with specific types of code smells, such as duplicated code,

large classes, or excessive coupling. These tools are trained

on datasets containing examples of code with known smells

and their corresponding refactoring solutions. By learning

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 5

from these examples, AI models can predict potential

smells in new code and even suggest appropriate refactoring

actions. For example, neural networks and decision tree

algorithms are often used to detect complex patterns that

traditional static analysis tools might overlook. AI tools

have the ability to continuously learn and adapt to new code

smells as they emerge, providing up-to-date

recommendations aligned with the latest coding standards
and best practices. These adaptive capabilities ensure that

AI-driven solutions remain effective in evolving software

development environments. Additionally, AI tools can

prioritize which code smells to address based on their

impact on the software’s overall quality and performance.

This prioritization enables developers to focus on resolving

the most critical issues first, optimizing both time and

resources in the refactoring process.

III. REQUIREMENTS BASED

APPROACHES

Requirements form the foundation for the entire

development process, guiding design, implementation, and

validation. Accurate requirements ensure that the software

aligns with the stakeholders' needs and business objectives,

minimizing the risk of delivering a product that fails to

solve the intended problems. Poorly defined or

misunderstood requirements often lead to uncontrolled

expansion of a project's scope (scope creep), increased
costs, and extended timelines, as developers may need to

revisit and revise their work. Clear and precise requirements

help prevent miscommunication between stakeholders and

the development team, by providing a shared understanding

of project goals. By addressing ambiguities and prioritizing

critical functionalities early, teams can manage risks and

allocate resources more effectively.

A. MoSCoW Method

The MoSCoW method is a widely used prioritization

technique in software engineering that categorizes

requirements into four groups: Must Have, Should Have,

Could Have, and Won’t Have. This method helps

stakeholders clearly distinguish between critical and less

critical functionalities, with the aim of ensuring that the

most essential requirements are delivered first. For

example, "Must Have" requirements are vital for the

system's operation, while "Could Have" requirements are
only implemented if time and resources permit. The method

is particularly effective in agile environments where the

prioritization needs to be dynamic and responsive to project

constraints [18].

B. Kano Model

The Kano Model is a user-centered approach to prioritizing
requirements based on their impact on customer

satisfaction. It categorizes features into Basic Needs,

Performance Needs, and Excitement Needs, helping teams

understand which functionalities are critical to meet user

expectations and which might delight users unexpectedly.

For instance, while a website's login functionality is a basic

need, a personalized greeting might be an excitement need.

This model supports decision-making in product

development by aligning features with customer value [19].

C. Weighted Scoring

Weighted scoring is a systematic approach to prioritizing
requirements by assigning scores to various criteria such as

business value, implementation cost, technical risk, and

stakeholder urgency. Each requirement's total score

determines its priority, ensuring that decisions are data-

driven. For example, a requirement with high business

value and low cost might score higher than one with

medium value and high risk. This approach supports

transparency and alignment among stakeholders [20].

D. Value-Based Prioritization

Value-based prioritization focuses on delivering the

maximum value to customers and stakeholders by ranking

requirements based on their potential impact, such as return

on investment (ROI), customer satisfaction, and market

differentiation. This approach emphasizes delivering high-

value features early in the development process, allowing

for quicker feedback and market adaptation. For instance,

implementing features that significantly increase user
engagement might be prioritized over those with marginal

gains [21].

E. FODA Approach

Feature-Oriented Domain Analysis (FODA) is a

methodology used in software engineering to analyze and

model the common and variable features of a domain. It is
particularly useful in domains where families of related

software systems share a core set of functionalities but also

exhibit variability in certain features. FODA aims to

improve the development and maintenance of software by

enabling systematic reuse and customization.

Introduced by Kang et al. in the 1990s [1],[22], FODA

emphasizes the identification of features, which are end-

user-visible characteristics of a system. The methodology

consists of three main stages:

a) Context Analysis: Understanding the problem domain

and its boundaries.
b) Domain Modeling: Capturing the commonalities and

variabilities among the systems in the domain.

c) Feature Modeling: Representing these commonalities

and variabilities explicitly through feature models, often
depicted using FODA Trees.

A FODA Tree, or Feature Model, is a hierarchical structure
used to represent the features of a domain. It organizes

features into:

 Mandatory Features: Features that are always included

in every product.

 Optional Features: Features that may or may not be

included, depending on the system configuration.

 Alternative Features: A set of features where only one

can be selected.

 Or Features: A set of features where one or more can

be selected.

The tree is rooted in an overall domain feature, which
represents the overarching functionality of the domain.

From this root, branches represent relationships between

features, using specific notations to show dependencies and

constraints. A filled circle indicates a mandatory feature. An

empty circle signifies an optional feature. An arc

connecting sibling nodes indicates a group of alternative

features where a filled arc is a regular OR connective (one

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 6

or more) and an empty arc is an EXCLUSIVE OR

(XOR)connective (only one).

A typical example of a FODA tree, as described by [23], is

shown in Figure 1, illustrating the decomposition of a

Mobile Phone design task into sub-tasks: Calls, GPS,

Screen, and Media. The Calls and Screen sub-tasks

represent mandatory features, whereas GPS and Media are

classified as optional features. The Screen requirement is
further decomposed using an XOR connective, which

specifies three mutually exclusive implementation options:

A Basic Screen, a Color Screen, or a High-Resolution

Screen. In contrast, the Media requirement can be satisfied

by incorporating either or both of the following features: A

Camera and an MP3 player.

Figure 1: FODA Tree example [23]

FODA Tree approach provides many benefits. Firstly, with

its graphical representation it provides a clear and intuitive

understanding of the domain's feature landscape. Secondly
it facilitates tailoring software systems to meet specific

requirements and lastly it enables the structured reuse of

features across systems.
FODA and its associated trees are widely applied in

Software Product Line Engineering (SPLE), where multiple

software products are derived from a shared codebase. The

methodology's emphasis on features and variability makes it

ideal for managing complexity in evolving systems.

IV. FUZZY SPECIFICATION TREE

A. General Design

The Fuzzy Specification Tree Model (FST) that we propose

differs from the conventional FODA Tree approach for

several reasons. First, it integrates both discrete and fuzzy

elements, which can lead to more complex models. Second,
it combines structural and logical elements within the same

framework. While these design choices have the potential to

create an overly complicated model, the complexity was

carefully managed by restricting combinations to those that

are meaningful within the domain and by designing a user-

friendly set of linguistic elements.

The Fuzzy Specification Tree Model is aimed to perform

some basic functions through automation:

 Facilitate interface and implementation of

configurations.

 Facilitate subtyping relations between configurations.

 Check how functional each feature is.

 Make it possible to decide on the optimum module to be

 developed as the next task.

Our approach utilizes two trees, created in the same format

but serving distinct purposes. One tree represents the

requirements, while the other represents the

implementation, which corresponds to the current structural

model of the project. The requirements tree consists of

logical nodes that indicate the degree to which specific

features of the software are functional, fully leveraging
fuzzy logic principles. In contrast, the task tree exclusively

comprises aggregation relations, representing the

completion levels of individual tasks. The task tree tracks

the progress of tasks and provides fuzzy logic values that

quantify task accomplishment. These values are directly

linked to the leaves of the requirements tree, serving as

inputs to calculate the functionality of the software’s

features. A bottom-up algorithm is then employed to

propagate these values through the requirements tree,

ultimately determining the functionality of higher-level

features or maybe the whole project.

B. Sequence Operator

This operator combines its operands in a sequential

relationship from left to right. In this relationship, the

operand on the left has precedence over the operand on the

right. All values are checked from left to right. If all

required operands are true (1), true is returned. If more than
one required operand is not true, false (0) is returned. If

only one required operand has a value other than true (1),

and it is the rightmost required operand, it returns the value

of that operand.

This operator is used when a requirement must be fully

fulfilled for another requirement to be meaningful. (That is,

if the second will not have any meaning unless the first is

fully fulfilled.) In this case, a partial success will only be

allowed at the very last step.

Example: Let's say the task is "First go to New York, then

find Central Park" In this case, if I couldn't go to New York,
there would be no point in trying to find the Central Park

(or claiming that I found it). Let's say I went to New York,

but I got stuck around Harlem. In that case, for example, a

partial success can be mentioned, such as 0.7 which is a

value between 0 and 1. However if you are not exactly in

New York (even if you are in a nearby city) the success rate

of reaching the Central Park would be 0.

Figure 2: Sequence notation

We use this connective when one operand has a clear
priority over the other and must be completed before the

other even has a chance to start. In Figure 2 the graphical

syntax of the Sequence operator can be seen. It should be

noted that the operands of the sequence operator form an

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 7

ordered list and there is no commutative property. The

operands are ordered from left to right where left has the

priority.

Table 1: Sequence Operation Value Table

Sequence 0.00 0.25 0.50 0.75 1.00

0.00 0.00 0.00 0.00 0.00 0.00

0.25 0.00 0.00 0.00 0.00 0.00

0.50 0.00 0.00 0.00 0.00 0.00

0.75 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.25 0.50 0.75 1.00

Table 1 displays the results of the sequence operation for

various sample fuzzy values. Each row represents a specific

value of the first operand, while each column corresponds

to a specific value of the second operand. Five values,

spaced at intervals of 0.25, are selected to represent the
entire range of fuzzy logic values between 0 (false) and 1

(true).

It is evident that the distribution of values in the table is not

particularly noteworthy. The result takes on fuzzy values

only when the first operand equals 1.

The Sequence operator was inspired by the dependency

relation, software reuse, inheritance, versioning and project

management with tasks arranged in a temporal order.

C. Features Operator

Features operator is a connective that combines adherence

to multiple independent features of a parent specification. It

is assumed that there is no overlap between the features. In

other words, they are semantically orthogonal to each other.

In this case, the Product T-Norm function is used between

the operators in order to compute the result:

Parent = Op1 x Op2 (1)

The order is not important in this operation. All mandatory
operands are multiplied and optional operands are ignored.

Figure 3: Features notation

Figure 3 illustrates the graphical syntax of the Features
operator, represented by a circled question mark connecting

two operands. Features typically refer to the capabilities or

functionalities of a project that collaborate to achieve a

common objective without compromising each other’s

performance. A classic example is the engine and

transmission of a car where the overall efficiency of the

vehicle can be approximated as the product of the

efficiencies of these two components. Similarly, in

software, features such as speed efficiency and space

efficiency can be analyzed in this manner. The connection

between other attributes, such as portability, generality,

usability, and robustness, also fall under this categorization.

Table 2: Features Operation Value Table

Features 0.00 0.25 0.50 0.75 1.00

0.00 0.00 0.00 0.00 0.00 0.00

0.25 0.00 0.06 0.12 0.19 0.25

0.50 0.00 0.12 0.25 0.38 0.50

0.75 0.00 0.19 0.38 0.56 0.75

1.00 0.00 0.25 0.50 0.75 1.00

Table 2 presents the typical results of the Features

Operation. Since the Product T-Norm involves the

multiplication of fractional values, the resulting value can

decrease rapidly when a large number of operands are less
than one. It is important for developers to distinguish

between Features and Aggregation relationships and to

avoid incorrectly marking an aggregation as a feature.

D. Aggregation Operator

The Aggregation operator is employed when the

relationship between the operands and the parent node
represents a Part-Whole relationship. This operator is used

to model a requirement that is composed of two or more

distinct sub-requirements where partial success in one can

pay for the failure in the other. In such cases, a weighted

average operation is performed based on the relative

weights of the components within the whole. Only

mandatory nodes are considered in this calculation. The

formula is:

Whole = (P1*w1 + P2*w2)/(w1+w2) (2)

where P1 and P2 are the fuzzy operands; and w1 and w2 are

relative weights of the two operands.

Figure 4: Aggregation notation

Figure 4 shows the syntax of the Aggregation operator.

There is a similar construct in the classical FODA diagrams
that can be interpreted as a conjunction as well as an

aggregation depending on the point of view.

In requirements engineering, this connector is applied when

the whole system performs two or more independent tasks,

each contributing to the whole in proportion to its assigned

weight. Importantly, there should be no interaction between

the individual parts. In other words, these functions operate

independently, performing distinct tasks that together fulfill

the broader objective.

The concept of a task is more appropriate for the operands

of Aggregation than the concept of a feature. For instance,

an application can be imagined as capable of performing

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 8

multiple independent functions. Each item in the

application's main menu is aggregated to contribute to the

overall success of the system.

Table 3: Aggregation Operation Value Table

Aggregation 0.00 0.25 0.50 0.75 1.00

0.00 0.00 0.12 0.25 0.38 0.50

0.25 0.12 0.25 0.38 0.50 0.62

0.50 0.25 0.38 0.50 0.62 0.75

0.75 0.38 0.50 0.62 0.75 0.88

1.00 0.50 0.62 0.75 0.88 1.00

Table 3 presents the results of the Aggregation operation.

Under normal operating conditions, weighting plays a

critical role in the calculation. In our approach, weights are

defined as properties of the nodes. However, to illustrate the
operation of the operator, equal weights are assumed in the

table.

E. Options Operator

The final operator in the Fuzzy Specification Tree Model is

the Options operator. This operator is used when a problem

has multiple potential solutions. For example, it can be
applied in scenarios involving a Java interface with

multiple implementations. If any one of the

implementations is sufficient to solve the problem, this

operator is employed to indicate that the best available

solution determines the actual performance presented for

the problem at hand. The performance of the solution is

assessed using the Fuzzy Gödel OR function, which is

defined as:

Problem = Max(S1, S2) (3)

where S1 and S2 are the two operands.

Figure 5: Options notation

As can be seen in Figure 5, the options operation is

represented with a logical OR sign in a circle.

Table 4: Options Operation Value Table

Options 0.00 0.25 0.50 0.75 1.00

0.00 0.00 0.25 0.50 0.75 1.00

0.25 0.25 0.25 0.50 0.75 1.00

0.50 0.50 0.50 0.50 0.75 1.00

0.75 0.75 0.75 0.75 0.75 1.00

1.00 1.00 1.00 1.00 1.00 1.00

Table 4 presents the typical results of the Options

operation. The Gödel OR function that shapes the results is

quite generous in terms of the truth values.
This operation corresponds to both OR and XOR

connectives in classical FODA trees. Notably, the XOR

operation in a FODA tree does not represent a special case

of a fuzzy XOR. For instance, in the example shown in

Figure 1, the Color and High-Resolution options are not

strictly mutually exclusive. Additionally, it remains

debatable whether the Basic Screen option is extended by

these two options or stands as a separate entity.

This presents an interesting example of the two-sided

semantic nature of operations. A well-known approach to
understanding the semantics of programming languages is

axiomatic semantics. In this paradigm, every operation is

characterized by two aspects: a pre-condition and a post-

condition. Since operations align better with the functional

programming paradigm (where side effects are absent) it

may be more appropriate to refer to these aspects as input

and output. When a description is provided as the semantics

of an operation, it is crucial to specify whether it pertains to

the input or the output of the operation.

Logical constraints on the input form a logical statement

assumed to be true for the operation to be valid (or
meaningful). Conversely, describing the output pertains to

the nature of the transformation associated with the

operation itself.

When discussing the exclusivity of an OR operation, it is

essential to distinguish between two types of exclusivity:

(1) the exclusivity imposed by the domain as a given fact,

and (2) the exclusivity that may be introduced by the

resultant requirement. The latter is compatible with a fuzzy

XOR, whereas the former is not. In the classical

interpretation of a fuzzy XOR we do not actually want the

two operands to be true together. The resultant value will
always be smaller than the two operands. For instance, the

XOR correspondent of the product T-Norm is: x+y−2⋅x⋅y

where x and y are the two operands which is always smaller

than both x and y, provided that x and y are between 0 and

1 (as all fuzzy logic truth values).

This implies that when one of the two requirements (x or y)

is met, it is undesirable for the other to be fulfilled as well.

Such scenarios are extremely rare in software engineering,

to the extent that it is challenging even to conceive of a

practical use case. Consequently, we conclude that the XOR

relation found in FODA trees does not represent a true XOR
operation and should not be generalized to its fuzzy

counterpart. In fact, the true fuzzy XOR is likely

unnecessary in practice. The fuzzy generalization of the

XOR operation, as used in classical FODA trees, is

effectively a fuzzy OR operation implemented using the

Gödel co-norm. The Gödel co-norm, which is the maximum

function, is particularly suitable for cases where multiple

solutions are provided for a single problem. When x and y

both address the same problem, the resultant degree of

success is naturally determined by the maximum value

between the two.

Figure 6: Node types

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 9

The Fuzzy Specification Tree notation encapsulates

information about both the nodes and the branching

structure. As shown in Figure 6, the syntax includes four

types of nodes. Primarily, nodes are distinguished by

whether they are fuzzy or discrete. Discrete nodes can only

assume true or false values. However, if they contain

internal details represented by child nodes in the tree, their

calculated value may be a fuzzy number derived from the
leaves. In such cases, a property called the threshold is used

to determine whether the node resolves to true or false.

Those that exceed the threshold become true and those that

do not become false.

The notation used for four different types of nodes can be

seen in Figure 6. Discrete nodes are depicted as rectangles

with sharp corners and fuzzy ones are depicted as rectangles

with rounded corners. Optional nodes are drawn with

dashed lines

Figure 7: FST Model Tool Screenshot

while mandatory nodes are drawn with solid lines.

The second criterion pertains to whether a node is

mandatory or optional. Unlike classical FODA trees, where

the optional or mandatory nature of contributions is treated

as a parameter of conjunction (or aggregation) operands,

our approach considers these attributes as intrinsic

properties of the nodes themselves. This allows them to be

associated with any operation in our framework.

When a node is optional, its completeness value does not
contribute as an operand when calculating the completeness

value of its parent. However, it can still serve as the target

of a direct query from the user. Optional nodes may also

include inner details in the form of sub-branches within the

Specification Tree and can delegate the computation of their

completeness value when explicitly queried by a user.

For instance, the user interface of an application might

consist of a mandatory graphical user interface and an

optional web interface. While the web interface is not

essential, a user might still wish to evaluate its current level

of completeness. In such cases, the optional node processes
the query in the same way as any other node.

Figure 7 presents a screenshot of our FST tool, a graphical

editor designed for creating fuzzy specification trees for

both requirements and associated tasks. The tool allows

users to link requirements with tasks, enabling the

integration of fuzzy completeness data into the calculation

of the current states of the requirements. It features dialogs

for configuring the properties of nodes and connectives,

along with standard graphical manipulation functionalities.

Additionally, the tool can generate on-demand queries to

assess the current functionality of any specified

requirement. In the figure, the requirement tree for a web

project is displayed on the drawing board, illustrating the

use of three different connectives with relevant content

assigned to their operands.

V. CONCLUSION

In this study, we introduced the Fuzzy Specification Tree

Model (FST), a novel approach designed to enhance the

requirements specification process in software engineering.

By extending the classical FODA framework with fuzzy

logic principles, the FST model provides a more adaptable

and precise method for analyzing requirements,

accommodating the inherent uncertainties of real-world

software development. This approach also supports efficient

project management and task prioritization through
operations such as Sequence, Features, Aggregation, and

Options, which are tailored to address practical engineering

challenges rather than adhering to a rigid logical structure.

To demonstrate the applicability of our model, we

developed a supporting tool that implements the FST

framework, enabling users to visualize, configure, and

evaluate their requirements dynamically. This tool not only

streamlines the modeling process but also facilitates better

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 10

decision-making by offering a clear representation of

project progress and feature completeness.

The FST model and its accompanying tool provide a robust

foundation for addressing the complexities of modern

software engineering. Future work will explore further

refinements to the model and its broader application in

domains requiring adaptive and scalable requirements

management solutions. It is also important to associate the
requirements with costs in order to enable smart decision

taking in full or semi-automatic usage.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, Feature-Oriented Domain Analysis (FODA)
Feasibility Study, Pittsburgh, PA, USA: SEI, Carnegie
Mellon University, Tech. Rep. CMU/SEI-90-TR-021, Nov.
1990. Available from:
https://www.researchgate.net/publication/215588323_Feature
-Oriented_Domain_Analysis_FODA_feasibility_study

[2] P. Pandey, "Analysis of the techniques for software cost
estimation," in 2012 Third International Conference on
Advanced Computing & Communication Technologies, pp.
16–19, 2012, doi: 10.1109/ACCT.2013.13. Available from:
https://doi.org/10.1109/ACCT.2013.13

[3] A. Haveri and Y. Suresh, "Software fault prediction using
artificial intelligence techniques," in 2nd IEEE International
Conference on Computational Systems and Information
Technology for Sustainable Solutions (CSITSS), pp. 54–60,

2017. Available from:
https://doi.org/10.1109/CSITSS.2017.8447615

[4] M. Lopez, "Machine learning techniques for software testing
effort prediction," Software Quality Journal, Springer, 2020,
Available from: https://doi.org/10.1016/j.jer.2023.100150

[5] H. Hourani, A. Hammad, and M. Lafi, "The impact of
artificial intelligence on software testing," in 2019 IEEE
Jordan International Joint Conference on Electrical

Engineering and Information Technology (JEEIT), pp. 565–
570, 2019. Available from:
https://doi.org/10.1109/JEEIT.2019.8717439

[6] R. Jindal, R. Malhotra, and A. Jain, "Predicting software
maintenance effort using neural networks," in 2015 IEEE
International Conference, 2015. Available from:
https://doi.org/10.1109/ICRITO.2015.7359258

[7] D. Wangoo, "Artificial intelligence techniques in software

engineering for automated software reuse and design," in
2018 4th International Conference on Computing
Communication and Automation (ICCCA), pp. 1–4, 2018.
Available from: https://doi.org/10.1109/CCAA.2018.8777584

[8] S. Pattnaik and B. Pattanayak, "A survey on machine learning
techniques used for software quality prediction," International
Journal of Reasoning-based Intelligent Systems, vol. 8, no.
1/2, pp. 3–14, 2016. Available from:

http://dx.doi.org/10.1504/IJRIS.2016.080058
[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,

Refactoring: Improving the Design of Existing Code,
Addison-Wesley Professional, 2002. Available from:
https://silab.fon.bg.ac.rs/wp-
content/uploads/2016/10/Refactoring-Improving-the-Design-
of-Existing-Code-Addison-Wesley-Professional-1999.pdf

[10] E. Fenandes, J. Oliveira, G. Vale, and T. Paiva, "A review-
based comparative study of bad smell detection tools," in

EASE '16: Proceedings of the 20th International Conference
on Evaluation and Assessment in Software Engineering, June
1–3, 2016, doi: http://dx.doi.org/10.1145/2915970.2915984.

[11] M. Alenezi and M. Zarour, "An empirical study of bad smells
during software evolution using Designite tool," i-manager’s
Journal on Software Engineering, vol. 12, no. 4, pp. 1–10,

Apr.–Jun. 2018. Available from:
http://dx.doi.org/10.26634/jse.12.4.14958

[12] P. Danphitsanuphan and T. Suwantada, "Code smell
detecting tool and code smell-structure bug relationship," in
2012 Spring Congress on Engineering and Technology (S-
CET), pp. 1–5, May 2012, doi: 10.1109/SCET.2012.6342082.
Available from: https://doi.org/10.1109/SCET.2012.6342082

[13] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur,

"DECOR: A method for the specification and detection of
code and design smells," IEEE Transactions on Software
Engineering, vol. 36, no. 1, pp. 20–36, Jan.–Feb. 2010,
Available from: https://doi.org/10.1109/TSE.2009.50

[14] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou,
"JDeodorant: Identification and removal of type-checking bad
smells," in Proceedings of the 12th European Conference on
Software Maintenance and Reengineering (CSMR), Athens,

Greece, Apr. 2008, pp. 329–331, Available from:
https://doi.org/10.1109/CSMR.2008.4493342

[15] S. Vidal, H. Vazquez, and A. Diaz Pace, "JSpIRIT: A flexible
tool for the analysis of code smells," in 2015 34th
International Conference of the Chilean Computer Science
Society (SCCC), Santiago, Chile, Nov. 2015, Available from:
http://dx.doi.org/10.1109/SCCC.2015.7416572

[16] A. Fard and A. Mesbah, "JSNOSE: Detecting JavaScript code
smells," in Proceedings of the 13th IEEE International

Working Conference on Source Code Analysis and
Manipulation (SCAM), 2013, pp. 116–125, Available from:
https://doi.org/10.1109/SCAM.2013.6648192

[17] M. Ilyas and M. Hummayun, "A comparative study on code
smell detection tools," International Journal of Advanced
Science and Technology, vol. 60, pp. 25–32, 2013, Available
from: http://dx.doi.org/10.14257/ijast.2013.60.03

[18] E. Miranda, "Moscow rules: A quantitative exposé," in Agile

Planning and Delivery, Springer, 2022, pp. 11–25, doi:
10.1007/978-3-030-87515-1_2. Available from:
https://www.researchgate.net/publication/356836488_MoSCo
W_Rules_A_quantitative_expose_Accepted_for_presentation
_at_XP2022

[19] J. Hartmann and M. Lebherz, Literature Review of the Kano
Model Development Over Time (1984–2016), Bachelor's
Thesis, Halmstad University, Sweden, 2016. Available from:

http://dx.doi.org/10.1108/02656711311299863
[20] J. del Sagrado and I. M. del Águila, "Assisted requirements

selection by clustering," arXiv preprint arXiv:2401.12634,
2024. Available from: https://arxiv.org/pdf/2401.12634

[21] D. Vavpotič, M. Robnik-Šikonja, and T. Hovelja, "Exploring
the relations between net benefits of IT projects and CIOs'
perception of quality of software development disciplines,"
arXiv preprint arXiv:1908.04070, 2019. Available from:

https://arxiv.org/pdf/1908.04070
[22] K. Czarnecki and U. W. Eisenecker, "Synthesizing objects,"

IEEE Software, vol. 18, no. 5, pp. 70–80, Sep.–Oct. 2001,
Available from: https://doi.org/10.1016/j.cad.2020.102932

[23] A. Durán, D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cortés, "FLAME: A Formal Framework for the Automated
Analysis of Software Product Lines Validated by Automated
Specification Testing," Software and Systems Modeling, vol.
16, no. 4, pp. 1219–1246, Oct. 2017, Available from:

https://link.springer.com/article/10.1007/s10270-015-0503-z

https://www.researchgate.net/publication/215588323_Feature-Oriented_Domain_Analysis_FODA_feasibility_study
https://www.researchgate.net/publication/215588323_Feature-Oriented_Domain_Analysis_FODA_feasibility_study
https://doi.org/10.1109/ACCT.2013.13
https://doi.org/10.1109/CSITSS.2017.8447615
https://doi.org/10.1016/j.jer.2023.100150
https://doi.org/10.1109/JEEIT.2019.8717439
https://doi.org/10.1109/ICRITO.2015.7359258
https://doi.org/10.1109/CCAA.2018.8777584
http://dx.doi.org/10.1504/IJRIS.2016.080058
https://silab.fon.bg.ac.rs/wp-content/uploads/2016/10/Refactoring-Improving-the-Design-of-Existing-Code-Addison-Wesley-Professional-1999.pdf
https://silab.fon.bg.ac.rs/wp-content/uploads/2016/10/Refactoring-Improving-the-Design-of-Existing-Code-Addison-Wesley-Professional-1999.pdf
https://silab.fon.bg.ac.rs/wp-content/uploads/2016/10/Refactoring-Improving-the-Design-of-Existing-Code-Addison-Wesley-Professional-1999.pdf
http://dx.doi.org/10.1145/2915970.2915984
http://dx.doi.org/10.26634/jse.12.4.14958
https://doi.org/10.1109/SCET.2012.6342082
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1109/CSMR.2008.4493342
http://dx.doi.org/10.1109/SCCC.2015.7416572
https://doi.org/10.1109/SCAM.2013.6648192
http://dx.doi.org/10.14257/ijast.2013.60.03
https://www.researchgate.net/publication/356836488_MoSCoW_Rules_A_quantitative_expose_Accepted_for_presentation_at_XP2022
https://www.researchgate.net/publication/356836488_MoSCoW_Rules_A_quantitative_expose_Accepted_for_presentation_at_XP2022
https://www.researchgate.net/publication/356836488_MoSCoW_Rules_A_quantitative_expose_Accepted_for_presentation_at_XP2022
http://dx.doi.org/10.1108/02656711311299863
https://arxiv.org/pdf/2401.12634
https://arxiv.org/pdf/1908.04070
https://doi.org/10.1016/j.cad.2020.102932
https://link.springer.com/article/10.1007/s10270-015-0503-z

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 11

ABOUT THE AUTHORS

 Aylin Güzel (M.Sc. in Computer
Engineering) is a Ph.D. student in
Computer Engineering Department of
Ege University, Izmir, Turkey.
Research interests include software

engineering, object oriented
programming, fuzzy logic and design
patterns.

 Ahmet Egesoy (PhD in computer
engineering) is an instructor and
Assistant Professor in Computer
Engineering Department of Ege
University Izmir, Turkey. Research
interests include object-oriented
programming, design patterns, model-

driven software development, artificial
intelligence, programming languages,
programming paradigms, philosophy of
the language, semiotics and knowledge
representation.

	A. Cost Estimation
	B. Fault Prediction
	C. Test Estimation
	D. Testing
	E. Software Maintenance
	F. Reuse
	G. Quality Prediction
	H. Detecting Bad Smells in Design and Coding
	A. MoSCoW Method
	B. Kano Model
	C. Weighted Scoring
	D. Value-Based Prioritization
	E. FODA Approach
	A. General Design
	B. Sequence Operator
	C. Features Operator
	D. Aggregation Operator
	E. Options Operator

