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ABSTRACT- This work introduces the Fuzzy 

Specification Tree Model (FST), a general-purpose 

framework designed to enhance AI-assisted software 

engineering. The paper begins by examining the intricate 

interplay between software engineering and artificial 

intelligence (AI), emphasizing how AI technologies are 

reshaping software development methodologies. Building 

on a foundation of requirements-driven approaches, the 

study presents a novel adaptation of classical feature 

modelling to create a versatile, fuzzy logic-based 

requirements specification model. This model not only 
facilitates the definition of functionalities for partially 

completed software but also supports formal methods for 

project management, version control, and reuse. By 

employing separate Fuzzy Specification Trees for 

requirements and the current state of a project, developers 

gain a dynamic perspective on project completeness and can 

leverage AI assistance to prioritize tasks, ensuring efficient 

progression toward project completion with minimal effort. 

KEYWORDS- AI, Software Engineering, Requirements 

Management, Fuzzy Logic. 

I. INTRODUCTION 

As software systems grow increasingly complex, traditional 

methodologies encounter significant limitations in terms of 

scalability and adaptability. The term "software crisis" is 

commonly used as an umbrella phrase to describe the 

persistent and ill-structured challenges associated with 

software development processes. This crisis is often 

characterized by the ongoing difficulty in meeting the ever-
growing demands for software. Addressing these demands 

is the overarching goal of software engineering. 

Artificial intelligence (AI) and formal methods are 

revolutionizing software engineering by addressing many of 

the challenges posed by the software crisis. AI techniques, 

such as machine learning and natural language processing, 

enable smarter automation of tasks like requirements 

analysis, code generation, testing, and debugging, reducing 

human error and increasing efficiency. Meanwhile, formal 

methods bring mathematical rigor to software development, 

allowing for precise specification, verification, and 
validation of software systems. Together, these approaches 

enhance the scalability and reliability of software 

engineering processes, enabling the creation of more 

complex and adaptive systems while maintaining high 

levels of quality.  
The Feature-Oriented Domain Analysis (FODA) method 

was created by Dr. Kyo C. Kang and his colleagues at the 

Software Engineering Institute (SEI) of Carnegie Mellon 

University in 1990. They documented their work in the 

report titled "Feature-Oriented Domain Analysis (FODA) 

Feasibility Study”, [1] which introduced a systematic 

approach to domain analysis by identifying common and 

variable features within a software domain. It is our view 

that a feature-driven point of view fostered by the use of AI 

can provide a solution for the problems of software 

engineering. 
Our proposal employs a fuzzy version of the FODA tree 

that is more in line with project management challenges. 

The remainder of this paper is organized as follows: Section 

II provides an overview of the role of AI in software 

engineering. Section III discusses the advantages of a 

requirements-based approach. Section IV presents the 

proposed model which is an innovative diagram type (and 

data structure) called Fuzzy Specification Tree Model. 

Finally, Section V concludes the paper. 

II. AI IN SOFTWARE ENGINEERING 

Artificial intelligence (AI) is a branch of computer science 

focused on creating intelligent systems capable of acting 

and communicating in ways that resemble human behavior. 

AI enables computer systems to explore and perform tasks 

in domains traditionally driven by human labor. These 

systems operate with high accuracy, reduce operational 

costs, and enhance production processes, making them 

more efficient and manageable. Consequently, it is expected 

that AI technologies will bring comparable advancements 

and efficiencies to the field of software engineering. 
Determining what qualifies as intelligence is inherently 

challenging, particularly in a domain already regarded as 

ill-structured, even for humans. Any technique that 

demonstrably aids in managing the inherent complexity of 

software systems by offering developers valuable insights 

or assistance can justifiably be classified as AI. 

AI has a wide range of applications in software engineering. 

The following sub-sections will explore several key areas 

where AI can be utilized, including cost estimation, fault 

prediction, test estimation, testing, software maintenance, 

reuse, quality prediction, source code summarization, and 

the detection of design and code bad smells. 
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A. Cost Estimation 

Software cost estimation is the approximate estimation of 
the project cost prior to the development process. Models 

used for cost estimation use mathematical algorithms or 

parametric equations. There are three main approaches: 

Empirical, Heuristic and Analytical [2]. 

The Empirical Approach uses data previously collected 

from a project, as well as some former estimates. These 

methods rely on historical project data and statistical 

models to estimate costs. This is a very data-driven 

approach and requires a significant amount of historical 

data for calibration. It uses regression or machine learning 

techniques to find relationships between project attributes 
(e.g., lines of code, team size) and cost.  

The Heuristic Approach relies on expert judgment and rule-

of-thumb techniques derived from past experience rather 

than rigorous data analysis. These techniques are flexible 

and intuitive when historical data is sparse or inconsistent. 

However, they rely heavily on expert knowledge and 

subjective judgment. This approach is useful in novel or 

poorly understood domains where data is unavailable. It is 

also adaptable to changing conditions. However, it can also 

be quite subjective and prone to bias. 

The analytical approach relies on mathematical models and 

formal frameworks to estimate costs based on project-
specific parameters. This method typically involves 

breaking a task into sub-parts and building estimations 

using principles or formal algorithms, often through 

deterministic calculations. It incorporates factors such as 

complexity, size, and team productivity. While this 

approach provides structured and objective results, it 

requires detailed upfront information about the project and 

can be rigid, making it less adaptable to changes during the 

project.  

As a result, the cost estimation process delvers the 

estimation of the size of the software, the effort required, 
and the overall cost [2]. 

B. Fault Prediction 

AI-based fault prediction is one of many branches being 

explored in software engineering, involving diverse 

techniques and applications across various domains to 

improve the identification and management of software 
faults. Classification techniques are widely applied in 

software fault prediction, aiming to identify faulty software 

modules using software metrics. Support Vector Machines 

(SVMs) are often employed to identify infeasible GUI test 

cases and to prioritize test cases in system-level testing, 

particularly in black-box testing scenarios where code 

access is unavailable. Logistic regression, Random Forest, 

AdaBoost, and bagging are utilized to optimize testing 

efforts by predicting change-prone components. 

Artificial Neural Networks, Support Vector Machines, and 

Linear Regression are used for planning and scheduling 
testing activities. Genetic Algorithms are applied for test 

data generation [3]. The K-Nearest Neighbor (KNN) 

algorithm is used to identify coincidentally correct test 

cases. 

Natural Language Processing (NLP) techniques are 

employed for multiple purposes, including test case 

prioritization, predicting manual test case failures, 

generating test cases, creating test cases from software 

requirements, automatically documenting unit test cases, 

and detecting duplicate defect reports. 

C. Test Estimation 

Test estimation is a technique which approximates how 
long a task would take to complete. Estimating effort for the 

test is one of the important tasks in test management. Test 

Effort Estimation is the process of forecasting how much 

effort is required to develop or maintain a software 

application. There are four methods for estimating the 

effort: Expert Estimation, Top-down Estimation, Bottom-up 

estimation and Parametric Estimation.  

Expert estimation is a technique in which an expert 

estimates how much effort a project requires [4]. Expert 

estimation is a widely used technique in automated software 

test estimation, relying on the knowledge and experience of 
domain experts to predict the effort, cost, or time required 

for testing activities. Unlike algorithmic approaches, expert 

estimation leverages human intuition and contextual 

understanding, allowing it to accommodate complex, 

ambiguous, or project-specific factors that may not be 

easily quantifiable. Expert estimation is not inherently 

automated, as it fundamentally relies on human judgment 

and expertise. However, aspects of the process can be 

augmented or facilitated by automation. While the core 

predictions are provided by experts, automation can assist 

in various ways such as data retrieval and analysis, expert 

collaboration, and bias mitigation. 
Top down estimation technique use experience from the 

past to make estimates for the future. The technique 

involves deriving high-level estimates based on the overall 

scope of a project and breaking it into smaller components. 

The advantage of using top down estimation methods is that 

they are basically more objective and repeatable than expert 

estimation. This task presents partial feasibility for 

automation. Automation in top-down estimation is feasible 

for supporting activities like data retrieval, initial estimate 

generation, and scenario modeling. However, achieving 

fully automated top-down estimation is currently unrealistic 
because of the need for strategic judgment, abstract 

reasoning, and adaptability. 

Bottom-up estimation methods involve analyzing the 

specific activities required to achieve a project's objectives 

[4]. Each task is broken down into smaller components, 

typically requiring less than two weeks of effort, to ensure a 

manageable level of detail. Individual estimates are then 

assigned to each component, and these are aggregated to 

produce the overall project estimate. The primary advantage 

of bottom-up estimation is its clarity and transparency, as 

the detailed breakdown makes the estimates more 

comprehensible and justifiable compared to high-level 
expert estimates. 

 Parametric estimation methods utilize algorithms to 

generate project estimates based on specific inputs, such as 

the required functionality and expected quality [4]. These 

algorithms apply predefined computational steps to produce 

an estimate exclusively from the provided inputs. The key 

advantage of parametric estimation is its objectivity, 

offering a systematic and data-driven approach that can 

deliver highly reliable results. However, this method is 

typically more complex and time-intensive compared to 

other estimation techniques, which can be a drawback in 
scenarios requiring rapid or simplified estimation processes. 

D. Testing 

Artificial Intelligence plays a pivotal role in modern 

software testing, improving accuracy and saving time [5]. 
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Techniques such as machine learning, deep learning, and 

natural language processing are integral to enhancing 

various aspects of the testing process. AI is increasingly 

applied to analyze and optimize code during software 

testing. 

Artificial intelligence is particularly well-suited for black 

box testing due to its ability to analyze patterns, predict 

outcomes, and adapt to varying inputs without requiring 
knowledge of the internal system structure.  

Black box testing is a method where the system is tested 

without any prior knowledge of its internal architecture or 

source code. Testers interact with the system by providing 

inputs and observing the outputs to evaluate its 

functionality. This approach helps identify issues related to 

usability, reliability, and system behavior in response to 

both expected and unexpected user actions. 

By leveraging AI algorithms, black box testing can 

efficiently handle complex testing scenarios, automate 

repetitive tasks, and uncover hidden issues that might be 
missed through traditional methods. This compatibility 

makes black box testing a prime candidate for incorporating 

AI-driven techniques to enhance testing accuracy and 

reliability. 

In black box testing, advanced algorithms are utilized to 

improve efficiency and outcomes. For instance: 

 C4.5, a decision tree algorithm, is employed to support 

decision-making in black box testing. 

 Huber Regression, Support Vector Regression (SVR), 

and multi-layer perceptron are used to predict test coverage 

in automated testing. 

 Hybrid Genetic Algorithms (HGA) automate GUI 

testing. 

 K-Means Clustering is applied to classify test cases, 

enhancing the effectiveness of regression testing. 

These AI-driven techniques demonstrate the transformative 

impact of AI in advancing the scope and precision of 

software testing practices. 

E. Software Maintenance 

AI plays a significant role in the maintenance of software. 

Predictive maintenance is one of the most prominent 

techniques applied in conjunction with AI-driven 

development methods. The primary goal of predictive 

maintenance is to anticipate system failures and issue 

timely warnings, enabling preventive actions to avoid 

disruptions [6]. This approach helps identify anomalies and 

potential defects in processes, allowing corrective measures 

before these issues escalate into critical failures. Machine 
learning techniques, including supervised and unsupervised 

learning, are commonly utilized to power predictive 

maintenance. 

Predictive maintenance uses various algorithms to analyze 

large volumes of operational data, identifying patterns and 

trends that signal potential failures. This proactive approach 

not only minimizes downtime but also reduces maintenance 

costs by addressing issues early. 

F. Reuse 

Reuse refers to the application of previously developed 

features, concepts, or objects in new situations, enhancing 

efficiency and innovation. Reusability, on the other hand, 

describes the ability of these components to be effectively 

adapted for new applications. In the context of software 

development, reuse significantly improves productivity, 

reduces time and costs, enhances reliability, and simplifies 

maintenance [7]. 

Various data mining techniques, such as knowledge 

discovery, classification, and clustering, play a crucial role 

in the domain of software reuse. Classification methods are 

employed to identify reusable software components, while 

clustering algorithms predict the reusability of software 

elements by grouping similar components. Additionally, 
methods like neural networks and classification algorithms 

are applied to further refine the identification of reusable 

components. 

Reusability not only optimizes development time and costs 

but also improves the reliability and overall quality of 

software systems. In classification-based approaches, 

software components are categorized using two key 

methodologies: Coverage-based Classification and 

Proximity-based Classification. 

In the Coverage-based Classification technique, operations 

are evaluated for their degree of generality and adaptability. 
In the Proximity-based Classification technique, the 

similarity between operations is measured by a proximity 

value (or similarity distance). A smaller proximity value 

indicates greater similarity between processes, suggesting a 

higher potential for reuse.  

By leveraging these classification strategies, organizations 

can systematically identify and integrate reusable 

components, leading to more efficient and reliable software 

development practices. 

G. Quality Prediction 

Software quality prediction involves identifying software 

modules that may present potential quality issues, helping 

to ensure overall system reliability and stability. Techniques 

such as Bayesian belief networks, neural networks, fuzzy 

logic, support vector machines, expectation-maximization 

algorithms, and case-based reasoning are widely used in 

software quality estimation [8]. Software quality is defined 
by compliance with requirements and the absence of 

defects, with reliability and stability being critical criteria. 

Accurately predicting these attributes simplifies the process 

of assessing software quality. 

Neural networks are a commonly used method for software 

quality prediction. In this approach, a three-layer feed-

forward neural network is trained using historical data. 

Once trained, clustering genetic algorithms are applied to 

extract intelligible rules from the network. These rule sets 

are then used to identify error-prone software modules, 

enabling the classification of modules as faulty or non-

faulty. 
Fuzzy logic offers another method for software quality 

estimation. This technique either fuzzifies an existing rule-

based estimation model or creates a new fuzzy model using 

software metrics. The Sugeno inferencing method is 

frequently employed to predict the number of faults in the 

training data, providing an adaptable and granular approach 

to quality prediction. 

By leveraging these advanced techniques, software quality 

prediction helps developers proactively address potential 

defects, ensuring more stable, reliable, and high-quality 

software systems. Each approach provides unique 
advantages, from the interpretability of fuzzy logic models 

to the powerful pattern recognition capabilities of neural 

networks, making them valuable tools for improving 

software quality. 
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H. Detecting Bad Smells in Design and Coding 

In software engineering, code smells refer to patterns in the 
code that, while not necessarily incorrect, indicate deeper 

problems in the software’s structure, such as poor design or 

maintainability issues. These issues if left unaddressed, can 

lead to more significant problems. 

Martin Fowler introduced the concept of bad smells in 

software development, referring to indicators of potential 

issues within the codebase [9]. A bad smell arises when 

developers make incorrect analyses of system requirements, 

take poor decisions regarding system design, or disregard 

fundamental principles of software development. 

Additionally, it may occur when developers write overly 
complex, hard-to-read, or poorly comprehensible code to 

address immediate needs without considering long-term 

maintainability.  

In essence, bad smells in code result from errors made 

during the software development process whether in 

analysis, decision-making, or implementation. These smells 

act as warning signs that a part of the code might require 

refactoring or further scrutiny to avoid deeper issues.  

Common scenarios where bad smells appear include: 

 Ignoring fundamental software development principles, 

 Faulty or incomplete analysis, 

 Poor decision-making, 

 Writing overly complex or unintelligible code, 

 Incorrectly integrating new modules into the system, 

 Misjudging the requirements or goals of the system. 

By recognizing and addressing these bad smells early, 

developers can improve the code's readability, 

maintainability, and overall quality, ensuring a more robust 

and scalable software product. Bad smells are indications of 

potential problems in the system. Also, design problems in 

the code are seen as a bad smell. 

Common bad smells in code include: 

Duplicated Code: Identical or highly similar code 
structures appearing in multiple locations. Duplicated code 

should be consolidated to avoid redundancy and simplify 
maintenance.  

Long Methods: Methods that attempt to perform too many 

tasks, making them harder to understand and reducing 
functionality. The **Extract Method** approach can be 

applied to break these methods into smaller, more focused 
ones. 

God Class: A class that contains an excessive amount of 

information and responsibilities, leading to high complexity 

and redundancy. Refactoring techniques such as Extract 
Class or Extract Subclass can redistribute responsibilities 
and streamline the class. 

Long Parameter Lists: Methods or functions with 

unnecessarily long parameter lists reduce clarity and 

usability. These should be shortened by using objects or 

grouping related parameters, improving code readability 
and simplicity. 

Switch Statements: Excessive use of switch statements can 

make code harder to maintain and extend. Alternative 

approaches, such as polymorphism or strategy patterns, 
should be employed to reduce their frequency. 

Comments: While comments can be helpful for 

documentation, they are often used to obscure bad code 

practices instead of addressing underlying issues. Over-

reliance on comments to explain poorly written code is 
itself considered a bad smell. 

Lazy Classes: Classes that do little or no meaningful work 

should be removed. Eliminating lazy classes reduces code 

size and improves clarity. 

By addressing these bad smells through refactoring, 

developers can create cleaner, more efficient, and easier-to-

maintain codebases. This process not only enhances the 

software’s performance and quality but also ensures better 

scalability and adaptability for future requirements. 

Bad smells in code can be detected either manually or 

through automated tools, which enhance the process by 
leveraging metric-based and visualization-assisted analysis. 

These tools assist developers in identifying, visualizing, and 

analyzing various code smells, making the detection process 

more efficient and systematic [10], [11], [12]. DECOR [13] 

is a tool commonly used for detecting spaghetti code, a type 

of code smell characterized by poor readability and tangled 

structure. Spaghetti code arises when the flow of the code 

becomes overly complex, making it difficult to follow or 

maintain. DECOR helps reduce the overall costs of 

development and maintenance by providing effective 
detection of these issues. 

JDeodorant [14] is another tool designed to automatically 

detect Type-Checking code smells in Java source code. It 

identifies bad smells and suggests appropriate refactoring 

techniques. 

Bad smells in code also help identify design problems 

within software systems, enabling developers to address 
underlying architectural issues. Tools like JSpIRIT [15] 

allow developers to define new detection rules for code 

anomalies and prioritize the identified smells. Code 

anomalies indicate design flaws in the source code and 

should be eliminated to enhance overall system quality. The 

detection process begins with scanning the code, followed 

by the automated identification of smells using predefined 

rules. Developers can then prioritize the identified smells 

based on customizable criteria, ensuring that the most 
critical issues are addressed first.  

JSNose [16] is a JavaScript-specific code smell detection 

technique that uses a metric-based approach combining 

static and dynamic analysis to identify smells in client-side 

code. JavaScript, being a highly flexible scripting language 

for interactive web applications, can exhibit various code 

anomalies such as lazy objects, long methods/functions, 

closure smells (nested functions), and excessive use of 

global variables. By detecting these anomalies, JSNose 
improves the maintainability and quality of JavaScript 
codebases. 

InCode [17], implemented within the Eclipse environment, 

is another tool for code smell detection. It identifies four 

common bad smells: Feature Envy, God Class, Duplicate 
Code, and Data Class. InCode uses a metrics-based 

approach to detect anomalies, providing actionable insights 

to improve code structure.    

Machine learning algorithms are frequently employed to 

analyze large codebases and identify patterns associated 

with specific types of code smells, such as duplicated code, 

large classes, or excessive coupling. These tools are trained 

on datasets containing examples of code with known smells 

and their corresponding refactoring solutions. By learning 
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from these examples, AI models can predict potential 

smells in new code and even suggest appropriate refactoring 

actions. For example, neural networks and decision tree 

algorithms are often used to detect complex patterns that 

traditional static analysis tools might overlook. AI tools 

have the ability to continuously learn and adapt to new code 

smells as they emerge, providing up-to-date 

recommendations aligned with the latest coding standards 
and best practices. These adaptive capabilities ensure that 

AI-driven solutions remain effective in evolving software 

development environments. Additionally, AI tools can 

prioritize which code smells to address based on their 

impact on the software’s overall quality and performance. 

This prioritization enables developers to focus on resolving 

the most critical issues first, optimizing both time and 

resources in the refactoring process. 

III. REQUIREMENTS BASED 

APPROACHES 

Requirements form the foundation for the entire 

development process, guiding design, implementation, and 

validation. Accurate requirements ensure that the software 

aligns with the stakeholders' needs and business objectives, 

minimizing the risk of delivering a product that fails to 

solve the intended problems. Poorly defined or 

misunderstood requirements often lead to uncontrolled 

expansion of a project's scope (scope creep), increased 
costs, and extended timelines, as developers may need to 

revisit and revise their work. Clear and precise requirements 

help prevent miscommunication between stakeholders and 

the development team, by providing a shared understanding 

of project goals. By addressing ambiguities and prioritizing 

critical functionalities early, teams can manage risks and 

allocate resources more effectively. 

A. MoSCoW Method 

The MoSCoW method is a widely used prioritization 

technique in software engineering that categorizes 

requirements into four groups: Must Have, Should Have, 

Could Have, and Won’t Have. This method helps 

stakeholders clearly distinguish between critical and less 

critical functionalities, with the aim of ensuring that the 

most essential requirements are delivered first. For 

example, "Must Have" requirements are vital for the 

system's operation, while "Could Have" requirements are 
only implemented if time and resources permit. The method 

is particularly effective in agile environments where the 

prioritization needs to be dynamic and responsive to project 

constraints [18]. 

B. Kano Model 

The Kano Model is a user-centered approach to prioritizing 
requirements based on their impact on customer 

satisfaction. It categorizes features into Basic Needs, 

Performance Needs, and Excitement Needs, helping teams 

understand which functionalities are critical to meet user 

expectations and which might delight users unexpectedly. 

For instance, while a website's login functionality is a basic 

need, a personalized greeting might be an excitement need. 

This model supports decision-making in product 

development by aligning features with customer value [19]. 

C. Weighted Scoring 

Weighted scoring is a systematic approach to prioritizing 
requirements by assigning scores to various criteria such as 

business value, implementation cost, technical risk, and 

stakeholder urgency. Each requirement's total score 

determines its priority, ensuring that decisions are data-

driven. For example, a requirement with high business 

value and low cost might score higher than one with 

medium value and high risk. This approach supports 

transparency and alignment among stakeholders [20]. 

D. Value-Based Prioritization 

Value-based prioritization focuses on delivering the 

maximum value to customers and stakeholders by ranking 

requirements based on their potential impact, such as return 

on investment (ROI), customer satisfaction, and market 

differentiation. This approach emphasizes delivering high-

value features early in the development process, allowing 

for quicker feedback and market adaptation. For instance, 

implementing features that significantly increase user 
engagement might be prioritized over those with marginal 

gains [21]. 

E. FODA Approach 

Feature-Oriented Domain Analysis (FODA) is a 

methodology used in software engineering to analyze and 

model the common and variable features of a domain. It is 
particularly useful in domains where families of related 

software systems share a core set of functionalities but also 

exhibit variability in certain features. FODA aims to 

improve the development and maintenance of software by 

enabling systematic reuse and customization. 

Introduced by Kang et al. in the 1990s [1],[22], FODA 

emphasizes the identification of features, which are end-

user-visible characteristics of a system. The methodology 

consists of three main stages: 

a) Context Analysis: Understanding the problem domain 

and its boundaries. 
b) Domain Modeling: Capturing the commonalities and 

variabilities among the systems in the domain. 

c) Feature Modeling: Representing these commonalities 

and variabilities explicitly through feature models, often 
depicted using FODA Trees. 

A FODA Tree, or Feature Model, is a hierarchical structure 
used to represent the features of a domain. It organizes 

features into: 

 Mandatory Features: Features that are always included 

in every product. 

 Optional Features: Features that may or may not be 

included, depending on the system configuration. 

 Alternative Features: A set of features where only one 

can be selected. 

 Or Features: A set of features where one or more can 

be selected. 

The tree is rooted in an overall domain feature, which 
represents the overarching functionality of the domain. 

From this root, branches represent relationships between 

features, using specific notations to show dependencies and 

constraints. A filled circle indicates a mandatory feature. An 

empty circle signifies an optional feature. An arc 

connecting sibling nodes indicates a group of alternative 

features where a filled arc is a regular OR connective (one 
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or more) and an empty arc is an EXCLUSIVE OR 

(XOR)connective (only one). 

A typical example of a FODA tree, as described by [23], is 

shown in Figure 1, illustrating the decomposition of a 

Mobile Phone design task into sub-tasks: Calls, GPS, 

Screen, and Media. The Calls and Screen sub-tasks 

represent mandatory features, whereas GPS and Media are 

classified as optional features. The Screen requirement is 
further decomposed using an XOR connective, which 

specifies three mutually exclusive implementation options: 

A Basic Screen, a Color Screen, or a High-Resolution 

Screen. In contrast, the Media requirement can be satisfied 

by incorporating either or both of the following features: A 

Camera and an MP3 player. 

 

Figure 1: FODA Tree example [23] 

FODA Tree approach provides many benefits. Firstly, with 

its graphical representation it provides a clear and intuitive 

understanding of the domain's feature landscape. Secondly 
it facilitates tailoring software systems to meet specific 

requirements and lastly it enables the structured reuse of 

features across systems. 
FODA and its associated trees are widely applied in 

Software Product Line Engineering (SPLE), where multiple 

software products are derived from a shared codebase. The 

methodology's emphasis on features and variability makes it 

ideal for managing complexity in evolving systems. 

IV.   FUZZY SPECIFICATION TREE 

A. General Design 

The Fuzzy Specification Tree Model (FST) that we propose 

differs from the conventional FODA Tree approach for 

several reasons. First, it integrates both discrete and fuzzy 

elements, which can lead to more complex models. Second, 
it combines structural and logical elements within the same 

framework. While these design choices have the potential to 

create an overly complicated model, the complexity was 

carefully managed by restricting combinations to those that 

are meaningful within the domain and by designing a user-

friendly set of linguistic elements. 

The Fuzzy Specification Tree Model is aimed to perform 

some basic functions through automation: 

 Facilitate interface and implementation of 

configurations. 

 Facilitate subtyping relations between configurations. 

 Check how functional each feature is. 

 Make it possible to decide on the optimum module to be     

     developed as the next task. 

Our approach utilizes two trees, created in the same format 

but serving distinct purposes. One tree represents the 

requirements, while the other represents the 

implementation, which corresponds to the current structural 

model of the project. The requirements tree consists of 

logical nodes that indicate the degree to which specific 

features of the software are functional, fully leveraging 
fuzzy logic principles. In contrast, the task tree exclusively 

comprises aggregation relations, representing the 

completion levels of individual tasks. The task tree tracks 

the progress of tasks and provides fuzzy logic values that 

quantify task accomplishment. These values are directly 

linked to the leaves of the requirements tree, serving as 

inputs to calculate the functionality of the software’s 

features. A bottom-up algorithm is then employed to 

propagate these values through the requirements tree, 

ultimately determining the functionality of higher-level 

features or maybe the whole project. 

B. Sequence Operator  

This operator combines its operands in a sequential 

relationship from left to right. In this relationship, the 

operand on the left has precedence over the operand on the 

right. All values are checked from left to right. If all 

required operands are true (1), true is returned. If more than 
one required operand is not true, false (0) is returned. If 

only one required operand has a value other than true (1), 

and it is the rightmost required operand, it returns the value 

of that operand. 

This operator is used when a requirement must be fully 

fulfilled for another requirement to be meaningful. (That is, 

if the second will not have any meaning unless the first is 

fully fulfilled.) In this case, a partial success will only be 

allowed at the very last step. 

Example: Let's say the task is "First go to New York, then 

find Central Park" In this case, if I couldn't go to New York, 
there would be no point in trying to find the Central Park 

(or claiming that I found it). Let's say I went to New York, 

but I got stuck around Harlem. In that case, for example, a 

partial success can be mentioned, such as 0.7 which is a 

value between 0 and 1. However if you are not exactly in 

New York (even if you are in a nearby city) the success rate 

of reaching the Central Park would be 0. 

 

Figure 2: Sequence notation 

We use this connective when one operand has a clear 
priority over the other and must be completed before the 

other even has a chance to start. In Figure 2 the graphical 

syntax of the Sequence operator can be seen. It should be 

noted that the operands of the sequence operator form an 
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ordered list and there is no commutative property. The 

operands are ordered from left to right where left has the 

priority. 

Table 1: Sequence Operation Value Table 

Sequence 0.00 0.25 0.50 0.75 1.00 

0.00 0.00 0.00 0.00 0.00 0.00 

0.25 0.00 0.00 0.00 0.00 0.00 

0.50 0.00 0.00 0.00 0.00 0.00 

0.75 0.00 0.00 0.00 0.00 0.00 

1.00 0.00 0.25 0.50 0.75 1.00 

Table 1 displays the results of the sequence operation for 

various sample fuzzy values. Each row represents a specific 

value of the first operand, while each column corresponds 

to a specific value of the second operand. Five values, 

spaced at intervals of 0.25, are selected to represent the 
entire range of fuzzy logic values between 0 (false) and 1 

(true). 

It is evident that the distribution of values in the table is not 

particularly noteworthy. The result takes on fuzzy values 

only when the first operand equals 1. 

The Sequence operator was inspired by the dependency 

relation, software reuse, inheritance, versioning and project 

management with tasks arranged in a temporal order. 

C. Features Operator 

Features operator is a connective that combines adherence 

to multiple independent features of a parent specification. It 

is assumed that there is no overlap between the features. In 

other words, they are semantically orthogonal to each other. 

In this case, the Product T-Norm function is used between 

the operators in order to compute the result: 

Parent = Op1 x Op2        (1) 

The order is not important in this operation. All mandatory 
operands are multiplied and optional operands are ignored. 

 

Figure 3: Features notation 

Figure 3 illustrates the graphical syntax of the Features 
operator, represented by a circled question mark connecting 

two operands. Features typically refer to the capabilities or 

functionalities of a project that collaborate to achieve a 

common objective without compromising each other’s 

performance. A classic example is the engine and 

transmission of a car where the overall efficiency of the 

vehicle can be approximated as the product of the 

efficiencies of these two components. Similarly, in 

software, features such as speed efficiency and space 

efficiency can be analyzed in this manner. The connection  

between other attributes, such as portability, generality, 

usability, and robustness, also fall under this categorization. 

Table 2: Features Operation Value Table 

Features 0.00 0.25 0.50 0.75 1.00 

0.00 0.00 0.00 0.00 0.00 0.00 

0.25 0.00 0.06 0.12 0.19 0.25 

0.50 0.00 0.12 0.25 0.38 0.50 

0.75 0.00 0.19 0.38 0.56 0.75 

1.00 0.00 0.25 0.50 0.75 1.00 

 

Table 2 presents the typical results of the Features 

Operation. Since the Product T-Norm involves the 

multiplication of fractional values, the resulting value can 

decrease rapidly when a large number of operands are less 
than one. It is important for developers to distinguish 

between Features and Aggregation relationships and to 

avoid incorrectly marking an aggregation as a feature. 

D. Aggregation Operator 

The Aggregation operator is employed when the 

relationship between the operands and the parent node 
represents a Part-Whole relationship. This operator is used 

to model a requirement that is composed of two or more 

distinct sub-requirements where partial success in one can 

pay for the failure in the other. In such cases, a weighted 

average operation is performed based on the relative 

weights of the components within the whole. Only 

mandatory nodes are considered in this calculation. The 

formula is: 

Whole = (P1*w1 + P2*w2)/(w1+w2)       (2) 

where P1 and P2 are the fuzzy operands; and w1 and w2 are 

relative weights of the two operands. 

 

Figure 4: Aggregation notation 

Figure 4 shows the syntax of the Aggregation operator. 

There is a similar construct in the classical FODA diagrams 
that can be interpreted as a conjunction as well as an 

aggregation depending on the point of view.  

In requirements engineering, this connector is applied when 

the whole system performs two or more independent tasks, 

each contributing to the whole in proportion to its assigned 

weight. Importantly, there should be no interaction between 

the individual parts. In other words, these functions operate 

independently, performing distinct tasks that together fulfill 

the broader objective. 

The concept of a task is more appropriate for the operands 

of Aggregation than the concept of a feature. For instance, 

an application can be imagined as capable of performing 
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multiple independent functions. Each item in the 

application's main menu is aggregated to contribute to the 

overall success of the system. 

Table 3: Aggregation Operation Value Table 

Aggregation 0.00 0.25 0.50 0.75 1.00 

0.00 0.00 0.12 0.25 0.38 0.50 

0.25 0.12 0.25 0.38 0.50 0.62 

0.50 0.25 0.38 0.50 0.62 0.75 

0.75 0.38 0.50 0.62 0.75 0.88 

1.00 0.50 0.62 0.75 0.88 1.00 

 

Table 3 presents the results of the Aggregation operation. 

Under normal operating conditions, weighting plays a 

critical role in the calculation. In our approach, weights are 

defined as properties of the nodes. However, to illustrate the 
operation of the operator, equal weights are assumed in the 

table. 

E. Options Operator 

The final operator in the Fuzzy Specification Tree Model is 

the Options operator. This operator is used when a problem 

has multiple potential solutions. For example, it can be 
applied in scenarios involving a Java interface with 

multiple implementations. If any one of the 

implementations is sufficient to solve the problem, this 

operator is employed to indicate that the best available 

solution determines the actual performance presented for 

the problem at hand. The performance of the solution is 

assessed using the Fuzzy Gödel OR function, which is 

defined as:  

Problem = Max(S1, S2)         (3) 

where S1 and S2 are the two operands. 

 

Figure 5: Options notation 

As can be seen in Figure 5, the options operation is 

represented with a logical OR sign in a circle.  

Table 4: Options Operation Value Table 

Options 0.00 0.25 0.50 0.75 1.00 

0.00 0.00 0.25 0.50 0.75 1.00 

0.25 0.25 0.25 0.50 0.75 1.00 

0.50 0.50 0.50 0.50 0.75 1.00 

0.75 0.75 0.75 0.75 0.75 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 

 

Table 4 presents the typical results of the Options 

operation. The Gödel OR function that shapes the results is 

quite generous in terms of the truth values.  
This operation corresponds to both OR and XOR 

connectives in classical FODA trees. Notably, the XOR 

operation in a FODA tree does not represent a special case 

of a fuzzy XOR. For instance, in the example shown in 

Figure 1, the Color and High-Resolution options are not 

strictly mutually exclusive. Additionally, it remains 

debatable whether the Basic Screen option is extended by 

these two options or stands as a separate entity. 

This presents an interesting example of the two-sided 

semantic nature of operations. A well-known approach to 
understanding the semantics of programming languages is 

axiomatic semantics. In this paradigm, every operation is 

characterized by two aspects: a pre-condition and a post-

condition. Since operations align better with the functional 

programming paradigm (where side effects are absent) it 

may be more appropriate to refer to these aspects as input 

and output. When a description is provided as the semantics 

of an operation, it is crucial to specify whether it pertains to 

the input or the output of the operation. 

Logical constraints on the input form a logical statement 

assumed to be true for the operation to be valid (or 
meaningful). Conversely, describing the output pertains to 

the nature of the transformation associated with the 

operation itself. 

When discussing the exclusivity of an OR operation, it is 

essential to distinguish between two types of exclusivity: 

(1) the exclusivity imposed by the domain as a given fact, 

and (2) the exclusivity that may be introduced by the 

resultant requirement. The latter is compatible with a fuzzy 

XOR, whereas the former is not. In the classical 

interpretation of a fuzzy XOR we do not actually want the 

two operands to be true together. The resultant value will 
always be smaller than the two operands. For instance, the 

XOR correspondent of the product T-Norm is: x+y−2⋅x⋅y 

where x and y are the two operands which is always smaller 

than both x and y, provided that x and y are between 0 and 

1 (as all fuzzy logic truth values). 

This implies that when one of the two requirements (x or y) 

is met, it is undesirable for the other to be fulfilled as well. 

Such scenarios are extremely rare in software engineering, 

to the extent that it is challenging even to conceive of a 

practical use case. Consequently, we conclude that the XOR 

relation found in FODA trees does not represent a true XOR 
operation and should not be generalized to its fuzzy 

counterpart. In fact, the true fuzzy XOR is likely 

unnecessary in practice. The fuzzy generalization of the 

XOR operation, as used in classical FODA trees, is 

effectively a fuzzy OR operation implemented using the 

Gödel co-norm. The Gödel co-norm, which is the maximum 

function, is particularly suitable for cases where multiple 

solutions are provided for a single problem. When x and y 

both address the same problem, the resultant degree of 

success is naturally determined by the maximum value 

between the two. 

 

Figure 6: Node types 
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The Fuzzy Specification Tree notation encapsulates 

information about both the nodes and the branching 

structure. As shown in Figure 6, the syntax includes four 

types of nodes. Primarily, nodes are distinguished by 

whether they are fuzzy or discrete. Discrete nodes can only 

assume true or false values. However, if they contain 

internal details represented by child nodes in the tree, their 

calculated value may be a fuzzy number derived from the 
leaves. In such cases, a property called the threshold is used 

to determine whether the node resolves to true or false. 

Those that exceed the threshold become true and those that 

do not become false. 

The notation used for four different types of nodes can be 

seen in Figure 6. Discrete nodes are depicted as rectangles 

with sharp corners and fuzzy ones are depicted as rectangles 

with rounded corners. Optional nodes are drawn with 

dashed lines 

Figure 7: FST Model Tool Screenshot

while mandatory nodes are drawn with solid lines. 

The second criterion pertains to whether a node is 

mandatory or optional. Unlike classical FODA trees, where 

the optional or mandatory nature of contributions is treated 

as a parameter of conjunction (or aggregation) operands, 

our approach considers these attributes as intrinsic 

properties of the nodes themselves. This allows them to be 

associated with any operation in our framework. 

When a node is optional, its completeness value does not 
contribute as an operand when calculating the completeness 

value of its parent. However, it can still serve as the target 

of a direct query from the user. Optional nodes may also 

include inner details in the form of sub-branches within the 

Specification Tree and can delegate the computation of their 

completeness value when explicitly queried by a user. 

For instance, the user interface of an application might 

consist of a mandatory graphical user interface and an 

optional web interface. While the web interface is not 

essential, a user might still wish to evaluate its current level 

of completeness. In such cases, the optional node processes 
the query in the same way as any other node. 

Figure 7 presents a screenshot of our FST tool, a graphical 

editor designed for creating fuzzy specification trees for 

both requirements and associated tasks. The tool allows 

users to link requirements with tasks, enabling the 

integration of fuzzy completeness data into the calculation 

of the current states of the requirements. It features dialogs 

for configuring the properties of nodes and connectives, 

along with standard graphical manipulation functionalities. 

Additionally, the tool can generate on-demand queries to 

assess the current functionality of any specified 

requirement. In the figure, the requirement tree for a web 

project is displayed on the drawing board, illustrating the 

use of three different connectives with relevant content 

assigned to their operands. 

V.   CONCLUSION 

In this study, we introduced the Fuzzy Specification Tree 

Model (FST), a novel approach designed to enhance the 

requirements specification process in software engineering. 

By extending the classical FODA framework with fuzzy 

logic principles, the FST model provides a more adaptable 

and precise method for analyzing requirements, 

accommodating the inherent uncertainties of real-world 

software development. This approach also supports efficient 

project management and task prioritization through 
operations such as Sequence, Features, Aggregation, and 

Options, which are tailored to address practical engineering 

challenges rather than adhering to a rigid logical structure. 

To demonstrate the applicability of our model, we 

developed a supporting tool that implements the FST 

framework, enabling users to visualize, configure, and 

evaluate their requirements dynamically. This tool not only 

streamlines the modeling process but also facilitates better 
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decision-making by offering a clear representation of 

project progress and feature completeness. 

The FST model and its accompanying tool provide a robust 

foundation for addressing the complexities of modern 

software engineering. Future work will explore further 

refinements to the model and its broader application in 

domains requiring adaptive and scalable requirements 

management solutions. It is also important to associate the 
requirements with costs in order to enable smart decision 

taking in full or semi-automatic usage.  
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