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ABSTRACT- Deep learning technology have been 

broadly used in segmentation tasks of liver. To address 

the limitation of suboptimal segmentation for small 

targets, an end-to-end EAS(ECA-Attention and Separable 

convolution) U-Net is proposed based on deep learning. 

The basic module employs depthwise separable 

convolutional modules instead of convolutional modules 

to reduce the parameters count and enhance the extraction 

of deep-layer information. The pyramid module based on 

Efficient Channel Attention (ECA) is utilized to obtain 

different receptive fields. And that model can overcome 

the limitation of the U-Net model with a single receptive 

field and improve the segmentation capability for targets 

of different sizes. A deep supervision module with multi-

scale output fusion is designed to extract detailed 

information about liver with high quality. The proposed 

method is tested on the Liver Tumor Segmentation (LiTS) 

dataset for liver segmentation, achieving a Dice 

Similarity Coefficient (DSC) of 92.20% for liver 

segmentation. Compared to existing models, the proposed 

method demonstrates higher accuracy in liver 

segmentation. 
KEYWORDS- Liver Segmentation, Deep Learning, 

CT Images, EAS, Liver Tumor Segmentation Dataset 

I. INTRODUCTION 

The liver is a vital organ essential for human, and liver 

cancer has became a frequently occurring type of cancer 

all around the world. According to the latest data released 

by the World Health Organization, a significant number 

of individuals die each year due to liver cancer [1].In the 

field of medicine, the primary method for screening liver 

diseases involves the use of Computed Tomography (CT) 

scans. In clinical practice, CT scan is an important basis 

for judging the patient’s liver condition and the extent of 

its development, as well as whether there is a tumor. 

Therefore, segmenting the patient’s liver region from CT 

images is of great significance to improve doctors’ 

diagnostic efficiency and is very important to save 

people’s life. These CT scans generate multiple 

consecutive layered images, which are then manually or 

semi-manually delineated by radiologists to identify the 

liver or areas of pathology for further diagnosis and 

treatment planning[2]. However, manual or semi-manual 

delineation of the liver or lesion areas is a process taking 

up a lot of time and is inclined towards subjectivity, and 

even worse, leading to potential errors. Therefore, 

automatic segmentation techniques for the liver and 

tumors is becoming a more and more popular research 

topic in the current medical field. Because automatic 

segmentation not only speed up the examination and save 

doctor’s time which they can spend on communicate with 

patients to gather more information, but also can improve 

the accuracy by fed with more data and doing more 

tasks.However, the low contrast between the surrounding 

organs and tissues and liver in CT results makes it a 

highly challenging task that the automatic and robust 

separating the liver out from CT scans.In recent years, 

deep learning techniques have been broadly used in 

segmentation medical image tasks, with an increasing 

number of researchers adopting deep learning technology 

for liver segmentation tasks[3].Currently, cutting-edge 

liver segmentation methods are mostly based on Fully 

Convolutional Networks (FCN). [4].The core of FCN is 

based on an encoder-decoder structure that performs 

pixel-wise classification of images, allowing it to input 

images of arbitrary sizes and produce outputs of the same 

size. Building upon FCN, Ronneberger et al. [5] 

introduced a fully symmetric Ushaped network known as 

U-Net. Its main innovation involves fusing each 

upsampling operation with the corresponding feature 

extraction segment to capture more low-level semantic 

information. U-Net achieves relatively accurate results 

with minimal training data.This network’s drawback is 

that the downsampling operation results in a significant 

loss of semantic information. To address this issue, Liu et 

al.[6]designed a network for 3D medical image 

segmentation called VNet, incorporating the residual 

connection concept from ResNet[7].It extracts liver 

features from the encoder and generates full-resolution 

output from the decoder. Although this method improves 

segmentation accuracy, the large parameter count of 3D 

convolutions requires longer training times.To alleviate 

this concern, Li et al.[8] proposed H-DenseUNet, 

blending features from 2D DenseUNet and 3D 

DenseUNet to expedite the convergence of 3D 

DenseUNet. Additionally, dense connection blocks are 

embedded in U-Net to further enhance liver and tumor 

segmentation accuracy.Furthermore, Han et al. [9] 
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proposed a method that stacks multiple 2D slices into 3D 

information for liver and tumor segmentation. This 

approach combines U-Net’s skip connections with 

ResNet’s residual connections and leverages the input of 

consecutive single slices to provide 3D contextual 

information. However, the obtained 3D contextual 

information is limited.In the context of segmenting multi-

scale tumor features, Jin et al.[10] introduced RA-UNet, 

using a 3D U-Net as the base network. It incorporates 

attention mechanisms in the network’s deep layers to 

achieve liver and tumor segmentation. While this method 

improves segmentation accuracy to some extent, the deep 

features become increasingly abstract, limiting the 

enhancement. 

As shown in the above text, training the network solely 

using the U-Net or ResNet architecture has limitations, 

including network performance degradation and low 

utilization of spatial features and extra time costing on 

training, resulting in lower segmentation accuracy. To 

address these issues, we employ a pyramid module based 

on Efficient Channel Attention (ECA) to obtain different 

receptive fields, overcoming the limitations of a single 

receptive field in the U-Net model and improving 

segmentation capabilities for targets of different sizes. 

Additionally, we design a deep supervision module for 

multi-scale output fusion, enhancing the segmentation 

task performance of the U-Net structure. 

II.  LIVER SEGMENTATION ALGORITHM 

INTRODUCTION 

With the fast step-forward of deep learning technology, 

segmentation of medical image based on deep learning is 

continually improving. Compared with traditional image 

segmentation algorithms, deep learning algorithms extract 

features of images to a deeper extent, have better 

segmentation accuracy, and do not require a lot of manual 

analysis and parameter adjustment. And segmentation 

based on deep learning technology is often more 

universal and able to cover more situations than 

traditional algorithms. Using deep learning algorithms to 

replace traditional image segmentation algorithms usually 

can achieve better segmentation results. 

A. The Network Structure Of U-Net 

The U-Net network structure is an improvement based on 

the Fully Convolutional Network (FCN) and is mainly 

consist of three parts: the encoder, the decoder, and skip 

connections. As illustrated in Figure 1, the network is 

divided into two parts: the left part represents the 

encoding phase, or the contraction process, while the 

right part corresponds to the decoding phase, or the 

expansion path. The contraction path primarily employs a 

convolutional network structure. And the path is 

consisting of two repeated 3 x 3 convolutional kernels. 

And each convolutional kernel uses the Rectified Linear 

Unit (ReLU) activation function, and has a 2 x 2 max-

pooling layer with a downsampling with step size of 2. At 

each downsampling stage, as a result of every pooling 

operation, the image gets a reduction to half of its 

preceding size, accompanied by a doubled increase in the 

number of feature channels. For example in Figure 1, the 

original image size is 572 x 572, after the first time of 

max pooling, it become 284 x 284 and similar to the later 

layers. Until the image complete all the compression to 

32 x 32. In this process, though the size of image is 

continually be compressed, the features are extracted 

layer by layer and will be used in the expansion path. 

The expansion path is the inverse process of the 

contraction path, involving deconvolution. In each step, 

the feature maps undergo upsampling, where each 

upsampling (Up) operation doubles the size of the image 

and reduces the corresponding feature channel number to 

half of its previous value. Finally, a 1 × 1 operation is 

performed, enabling the network model to analyze and 

infer pixel-level information. In the encoding phase, U-

Net reduces the image size through convolution and 

downsampling, extracting shallow-level feature 

information. In the decoding phase, deconvolution and 

upsampling are employed to capture deeper-level 

features. Through a skip connection mechanism, the 

feature maps obtained in the encoding and decoding 

phases are overlaid, combining both shallow and deep-

level features to refine the image. Ultimately, 

segmentation predictions are made based on the acquired 

feature maps. 

B. Alterations to the U-Net Structure 

In this paper, based on the U-Net architecture, we 

introduce the use of depth-wise separable convolution 

modules as a replacement for standard convolution 

modules. This modification significantly reduces the 

parameters count in the U-Net Structure. Furthermore, we 

incorporate an efficient attention mechanism, the 

Efficient Channel Attention (ECA) module, extracted 

from the ECA-Net architecture. Combined with a 

pyramid module, we propose the EAS (ECA-Attention 

and Separable convolution) feature extraction module, 

aiming to enhance the extraction of detailed information 

related to liver target. Finally, we introduce a multi-scale 

output fusion module to better capture complex features 

and effectively improve the model’s performance. 
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Figure 1: Network structure of U-Net 

 Introducing Depth-wise Separable Convolution 

Module 

The depth-wise separable convolution module [11] is a 

specialized convolution operation. There are two steps in 

the convolution process, which are depth-wise separable 

convolution and point-wise convolution. In the first step, 

depth-wise separable convolution, each channel of the 

input image are convolved separately, rather than 

convolving all channels together. This approach reduces 

the number of parameters, which contributes to boosting 

the model’s computational efficiency. The second step is 

point-wise convolution convolving the output of depth-

wise convolution to extract further features. As shown in 

Figure 2, the conventional convolution module is similar, 

while the depth-wise separable convolution module, as 

depicted in Figure 3, includes Batch Normalization (BN) 

and an ReLU activation function layer after the depth-

wise and point-wise layers. However, using ReLU as the 

activation function has the drawback. Because it has a 

characteristics that setting negative values to 0, which 

will result in losing some feature information. To improve 

this, LeakyReLU [12] is employed as a substitute for 

ReLU. LeakyReLU closely resembles ReLU; however, 

unlike ReLU, it outputs a small negative value for 

negative inputs instead of zero. This design mitigates the 

“dying ReLU” issue, preventing certain neurons from 

remaining inactive throughout the training process. This 

property becomes particularly relevant after point-wise 

convolution. The h-swish function is used instead of 

ReLU as the activation function to reduce the issue of 

vanishing gradients caused by an increase in the number 

of network layers, as illustrated in Figure 4. The 

advantages of this module include improved 

computational 

Figure 2: Standard Convolutional Module 

efficiency, reduced parameter count, enhanced extraction 

of deep-level information, and increased model accuracy. 

The h-swish function is a simplified variant of the swish 

activation function, and the computation of swish is 

represented by Equation: 

Swish(x) = x · sigmond(β · x) 

Β is a constant or trainable parameter. Swish possesses 

characteristics of being unbounded above and bounded 

below, smooth, and non-monotonic. In comparison to the 

ReLU activation function and its derivatives, Swish 

activation function significantly improves the accuracy of 

target detection in convolutional neural networks. 

However, swish function faces challenges in terms of 

computational complexity, and incorporation of the h-

swish function efficiently tackles the computational 

constraints associated with the swish function. The 
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computation of the h-swish function is represented by 

Equation: 

 

ReLU6[x] = min(max(0,x),c) 

The adjustable parameter in swish enables fine-tuning of 

the activation function to enhance information flow, 

promoting more gradual gradients. This, in turn, 

facilitates smoother optimization of the landscape, 

leading to improved generalization and faster 

convergence. 

 

  

Figure 3: Deep Separable Convolutional Module 

 
                                                  Figure 4: Optimized Deep Separable Convolutional Module 
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Figure 5: Pyramid Modules Based On Attention Mechanism 

 The Pyramid Module Based on Attention 

Mechanism 

The Dilated Spatial Pyramid Pooling module proposed by 

Chen et al. [13] in the DeepLabV3 algorithm. The ASPP 

(Atrous Spatial Pyramid Pooling) module consists of a set 

of parallel atrous convolutions with multiple dilation 

rates, enhancing the recognition of multi-scale targets by 

adjusting the convolutional kernel’s receptive field. ECA-

Net [14] is an efficient channel attention mechanism that 

improves the original SE-Net module with minimal 

parameters while enhancing the network’s detection 

performance. The ASPP module not only introduces a 

global average pooling path to obtain image-level 

features but also employs multiple atrous convolution 

paths, minimizing the loss of important edge details in the 

target due to downsampling to some extent. Importantly, 

it can capture features at multiple scales in the image. 

However, the first path in the parallel structure of the 

ASPP module does not utilize atrous convolutions to 

obtain features in multi-scale. Instead, it adjusts the 

channel number of the input feature map using a 1 × 1 

convolutional kernel, which cannot effectively filter the 

features. The previously mentioned ECA-Net network 

model belongs to the channel attention mechanism, 

adjusting the importance of features by applying attention 

to feature channels. In this paper, we integrate it with the 

ASPP module to propose the EAS (ECA-ASPP) module. 

We embed the EAS module into the encoding side of the 

U-Net network, enhancing the network’s ability to extract 

soft bone features at multiple scales. As shown in Figure 

5, the first convolution is 1 x 1 and no dilation, then the 

second convolution is 3x 3 and dilation is 6 and so on. 

 Multi-scale Output Fusion Module 

The concept of multi-scale output fusion involves 

integrating information from different scales to enhance 

the overall understanding and representation of features 

in a neural network. This module aims to combine 

outputs from multiple layers or pathways, each capturing 

information at a distinct scale. The fusion process ensures 

that the model has the ability to effectively leverage both 

fine-grained level details and coarse-level features, 

leading to improved performance in tasks such as object 

recognition, segmentation, or classification. 

For U-Net networks adopting an encoder-decoder 

structure, only the final stage outputs the ultimate 

model’s predicted segmentation map. That map of the 

final model is obtained by fusing the the last skip 

connection’s output feature maps. Although the last stage 

combines low-level features with high-level features that 

have undergone fusion and compression, possessing good 

spatial and pixel category information, the encoding side 

of the model undergoes multiple operations like 

convolution and pooling, reducing the model’s 

parameters while losing some feature information. 

Additionally, in the decoding side, multiple upsampling 

operations lead to the restoration of the feature map size 

but also result in information loss, both of which 

contribute to a decrease in prediction accuracy. 

Hence, a multi-scale output fusion module [15] is 

proposed, as illustrated in Figure 6. It can merge outputs 

from different scales to enhance the model’s accuracy and 

precision. This module assists the model in capturing 

complex features more effectively and improves overall 

performance. Moreover, the multi-scale output fusion 

module aids the model in better handling inputs of 

different scales, thereby improving accuracy and 

precision. In terms of feature fusion methods, there are 

generally two approaches: additive fusion and 

concatenative fusion. Additive fusion involves adding 

corresponding elements at each position of the feature 

maps from the upper and lower pathways. However, this 

method may lead to the loss of original feature 

information and may not reflect the complementary 

nature of features. Concatenative fusion, on the other 

hand, directly concatenates the feature maps from the 

upper and lower pathways, avoiding the information loss 

caused by additive fusion. It merges different channels, 

synthesizing features obtained earlier to produce 

subsequent features. 

C. Loss Function Choice 

During network training, the choice of the loss function is 

a crucial aspect. The smaller the value of the loss 

function, the closer the predicted values are to the ground 

truth. Cross Entropy (CE) is the most widely used loss 
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function in medical image segmentation. However, in 

cases of segmentation class imbalance, smaller targets are 

often overlooked. 

 

                                                                                                 
 

Figure 6: Deep supervision module of multi-scale output fusion 

As evident from the figure, this paper deals with small 

target segmentation, where cartilage occupies a smaller 

proportion of the image. Dice Loss (DL) is a loss function 

derived from the Dice coefficient, calculated based on the 

difference in overlap (F) between the predicted and 

ground truth results, where Pre represents the predicted 

image and GT represents the ground truth image. 

Therefore, this paper combines both, and the final loss 

function consists of two parts. 

  

. 

III. RESULTS AND ANALYSIS OF 

EXPERIMENTS 

A. Environment of Experiments 

The experimental environment is based on operating 

system the Ubuntu , programming language Python 3.10, 

and deep learning framework PyTorch 2.0.0 .The 

hardware configuration includes an Intel Core i9 

14900HX CPU, 64GB of RAM, and an RTX 4090 

graphics card, with CUDA 11.8 for accelerated 

computing. The optimizer uses Stochastic Gradient 

Descent (SGD) and the learning rate is set to 0.01. And 

the optimizer has a weight decay of 0.0001 and a 

momentum coefficient of 0.9. The batch size is set to 32, 

and the training epochs predefined number is 50. 

B. Data Set and Preprocessing 

The dataset was obtained from the Liver Tumor 

Segmentation (LiTS) competition initiated by the Medical 

Image Computing and Computer Assisted Intervention 

Society (MICCAI) in 2017 [16]. LiTS comprises 200 

contrast-enhanced 3D abdominal CT scan images from 

six different hospitals. For supervised training, MICCAI 

provided manually annotated masks drawn by 

experienced radiologists for liver and tumor regions. The 

dataset differs significantly in spatial resolution, image 

quality, and visual aspects. The in-plane resolution is 

fixed at 512 × 512 pixels, with pixel distances ranging 

from 0.6 mm × 0.6 mm to 1.0 mm × 1.0 mm. The slice 

spacing ranges from 0.45 mm to 6.0 mm, and the number 

of slices for different cases varies from 42 to 1026. We 

sliced the nii files into 2D images along the z-axis. 

Simultaneously, slices containing non-liver regions or 

with liver area less than 1.5% were not retained during 

the segmentation process. 

In contrast to natural images, CT scan images store pixel 

values in Hounsfield units (Hu), with pixel values ranging 

between [-3000, 3000]. In this experiment, the suitable 

intensity values within the range of [-200, 250] were 

obtained by analyzing the window width and window 

level values of CT images and the liver region. Pixels 

greater than 250 Hu were set to 250, and pixels less than -

200 Hu were set to -200, allowing for a clearer 

observation of the liver region to be segmented. After 

adjusting the window width and window level, the liver 

region becomes more clearly visible. 

Regarding dataset partitioning, this paper randomly 

divides the 130 cases into a training set and a validation 

set in an 8:2 ratio, with the remaining 70 cases forming 

the test set. Additionally, to prevent model overfitting, the 

paper employs random cropping to augment the data. The 

cropped size is set to 32 × 256 × 256. Additionally, data 

augmentation was performed by flipping the images 

vertically and horizontally, as well as applying random 

rotations at specific angles to enhance the dataset. 

C. Evaluation Metrics 

To accurately measure the segmentation performance of 

the network on liver CT medical images, this paper 

adopts Dice Similarity Coefficient (DSC), precision, 

recall and Hausdorff distance as evaluation metrics. 

 Dice Similarity Coefficient (DSC) 

The Dice Similarity Coefficient (DSC) stands out as the 

widely employed metric in segmentation tasks for 

assessing the resemblance between two samples, with a 

range of [0, 1], as shown in formula, where Pre represents 

the network’s predicted image, GT represents the ground 

truth image. The bigger of the DSC is, the better 

performance of the segmentation is. 
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 VOE (Volumetric Overlap Error) 

VOE (volumetric overlap error) represents the error rate, 

measured in percentage where (Vfalse) represents the 

volume where the predicted and true results do not 

overlap, and (Vtrue) represents the total true volume. 0% 

indicates complete segmentation, while 100% indicates 

no overlap between the predicted and ground truth 

results. 

Its formula is: 

 

 

 ASD(Average Symmetric Surface Distance)  

ASD (average symmetric surface distance) represents the 

average surface distance between the predicted and 

ground truth results in symmetric positions, measured in 

millimeters, where 0 mm indicates perfect segmentation, 

where ( N ) represents the number of points, ( di ) 

represents the surface distance from the ground truth, and 

( d′
i ) represents the surface distance from the prediction.. 

Its formula is: 

D. Experiments and Comparison 

This study addresses the issue of unsatisfactory 

performance of the U-Net model in the segmentation of 

liver CT images. The network model was improved, 

leading to successful model training. Figure 7 shows the 

loss curve of the model on the training set. As seen from 

Figure 7, when the number of iterations reaches around 

47, the loss function value essentially stabilizes, settling 

around 0.0273. This indicates that the model has 

essentially converged. After approximately 47 iterations, 

the loss function value stabilizes around 0.0273, 

representing the completion of training. Also Yang 

introduce a way to visualize of time series data, [17] 

Figure 9 is the result obtained after segmentation of 

the test set Figure 8 by the trained model. 

To further verify whether the improved network 

enhances segmentation accuracy, calculations were 

performed for the following metrics. As shown in Table 1, 

compared to other network models, the proposed 

improved network model in this study exhibits certain 

advantages in various metrics on the same test set. This 

indicates that the enhanced model in this study achieves 

satisfactory segmentation results for liver. 

Figure 7: Training set loss curve 

 

Figure 8: Original Image 
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             Figure 9: Our Segmentation Result 

Table 1: Comparison of different components in the liver segmentation 

Model Liver Segmentation DSC(%) VOE(%) ASD(mm) 

U-Net 2D 89.13 90.54 8.13 

VNet 3D 89.40 90.68 7.53 

Ours 92.20 93.05 7.65 

  

IV. CONCLUSION 

The paper proposes an end-to-end EAS U-Net based on 

the U-Net network. By replacing standard convolutional 

modules with depth-wise separable convolutional 

modules, the number of parameters is reduced, leading to 

improved computational efficiency. The model utilizes an 

ASPP (Atrous Spatial Pyramid Pooling) based on ECA 

(Efficient Channel Attention) to mitigate the loss of target 

edge information caused by downsampling operations. 

Additionally, a multi-scale output fusion module is 

designed to complement feature information. Through 

comparative experiments with different network models, 

the proposed model in this paper achieves better 

segmentation accuracy in liver segmentation. 
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