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ABSTRACT- Pulmonary nodules serve as critical 

indicators for early lung cancer diagnosis, making their 
detection and classification essential. The prevalent use of 

transfer learning in recognition algorithms often encounters 

a significant disparity between source and target datasets, 

which hampers effective feature extraction from pulmonary 

nodules and degrades performance. An enhanced neural 

network model leveraging convolutional neural networks is 

introduced to address this issue. This model integrates a pre-

trained GoogLeNet Inception V3 network with a custom-

designed feature fusion layer, improving the network’s 

ability to extract features. To ascertain the optimal 

configuration, the models were evaluated based on accuracy 

in various combinations. The experiments conducted on the 
LUNA16 pulmonary nodule dataset revealed that the refined 

network model achieved an accuracy of 88.78% and a 

sensitivity of 87.18%. This represents an increase of 2.7 and 

2.22 percentage points in accuracy and sensitivity, 

respectively, compared to the GoogLeNet Inception V3 

algorithm. Further tests across different dataset proportions 

also yielded superior outcomes, demonstrating enhanced 

generalization capabilities. These findings can offer 

objective benchmarks for clinical diagnosis. 

KEYWORDS- Deep Learning, Target Detection, Neural 

Network, Medical Image, Transfer Learning, GoogLeNet 

I. INTRODUCTION 

The incidence and mortality rates of lung cancer continue to 

rise each year. According to the American Cancer Society, 

lung cancer accounts for over 14% of all new cancer 

diagnoses annually. Lung cancer leads in both incidence and 

mortality among all malignant tumors. Pulmonary nodules, 

which are often multi-organ and multi-system diseases 
linked to lung cancer, could be early markers of the disease. 

Consequently, detecting pulmonary nodules is critically 

important for the early diagnosis of lung cancer [1-2]. 

Computed Tomography (CT), a prevalent imaging technique 

for evaluating pulmonary nodules, necessitates that 

physicians possess specialized medical imaging knowledge 

and clinical experience. Additionally, the variability in 

diagnostic outcomes among physicians [3] has led to the  

widespread adoption of Computer-Aided Diagnosis (CAD) 

systems in recent years. These systems offer relatively 

objective metrics to support clinical decision-making. 

Traditionally, research methods involved labor-intensive 

feature extraction from images, identifying regions of 

interest (ROI), and analyzing nodules based on shape, 

grayscale, and texture. However, with the swift advancement 
in the field of machine learning[4-5], deep learning 

algorithms like convolutional neural networks have become 

commonplace in various areas[6-10]. These include two-

stage detection algorithms focused on candidate regions such 

as RCNN, and regression-based one-stage detection 

algorithms like the YOLO [11] series. Researchers have 

applied the YOLO framework to detect nodules in CT scans 

using CNNs to predict multiple bounding boxes, achieving a 

sensitivity of 89% on the LIDC-IDRI dataset[12]. 

Commonly, networks such as CNN, YOLO, FCN, and R-

CNN trained on different datasets are used to extract features 

from the target dataset [13-16]. 
Despite the successes of transfer learning, the significant 

disparity between source and target datasets suggests 

potential improvements in feature extraction. To address this, 

we propose an enhanced GoogLeNet Inception V3 deep 

neural network model for pulmonary nodule detection. The 

core of this work involves developing a feature fusion layer 

and optimizing relevant parameters to enhance feature 

extraction from the target dataset. 

II. RELATED WORK AND METHODOLOGY 

A. Overview of GoogLeNet 

Szegedy and colleagues [17] introduced the GoogLeNet 

network, which represented a significant advancement in the 

field of deep learning. Distinct from earlier architectures like 

AlexNet and VGG, GoogLeNet featured a more profound 

and complex architecture yet utilized fewer parameters, as 
highlighted in Table 1. This network redesign, detailed in 

Figure 1, incorporated the innovative Inception layer. The 

Inception layer, a novel concept at the time, allowed for a 

substantial reduction in the number of parameters without 

sacrificing the network's performance. This design enabled 

more efficient computation and training processes, making 

GoogLeNet not only a powerful tool for image recognition 

tasks but also a more practical model for varying hardware 

capabilities. The introduction of auxiliary classifiers to 

enhance gradient flow at deeper layers and the use of a global 

average pooling layer instead of fully connected layers at the 
top also contributed to its efficiency and effectiveness. These  
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features helped in mitigating the vanishing gradient problem, 

which is common in deeper networks, thus ensuring better 

convergence during training. 

 

Table 1: Comparison of commonly used neural network 

parameters 

 
 

Figure 1: Network structure diagram of GoogLeNet 

B. Enhanced RGIV3 Network Design 

The GoogLeNet Inception V3 network [18], originally 

trained on the ImageNet dataset, shows a considerable 
disparity when applied to the LUNA16 dataset utilized in this 

study, leading to suboptimal performance. To address this, a 

fusion layer was designed to mitigate the effect of this 

discrepancy on the recognition process. This fusion layer 

facilitates the nonlinear fitting of network-learned feature 

information[19-20], enhancing the extraction of image 

features. 

The fusion layer is composed of three fully connected layers 

and one dropout layer, as depicted in Figure 2. This layer 

integrates with the GoogLeNet Inception V3 network, 

hereinafter referred to as GIV3, with the integrated network 

named RGIV3. 

Based on empirical data, node numbers should be selected 

from 1024, 512, 256, 128, with dropout rates between 0.4, 

0.5, 0.6. To identify the optimal setup, the study tests various 

combinations of node numbers and dropout rates in 30 

experimental groups, using accuracy as the criterion for 
selection. As shown in Table 2, the chosen parameter 

combination is 1024 and 512, with a dropout rate of 0.5. 

 

Figure 2: Improved RGIV3 structure diagram 

 

 

 

Model TOP-1 
Accuracy/% 

Number of 
Parameters 

Depth 

Inception V3 78.8 23 851 773 153 

Resnet50 75.7 25 636 701 164 

VGG16 71.3 138 357 533 25 

VGG19 72.5 143 667 232 26 
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Table 2: Experimental Results of Node Count and Dropout 

Rate Combinations 

Given the limited sample size of the target dataset, there is a 

high risk of overfitting when training a new model. To 

address this, the experiments utilize weights pre-trained on 

large-scale databases like ImageNet as the initial basis. Fine-

tuning is then performed at a lower learning rate to optimize 

performance. 

C. Methods for Updating Network Weights 

The selected method for updating the network weights is 

Stochastic Gradient Descent (SGD)[21-22], which involves 

updating the weights in the direction that reduces the learning 

rate towards the minimum of the loss function. The formula 

is detailed below: 

Wi1  Wi  hisi1                       (1) 

In this formula, Wi 1  denotes the weights after the i+1 

iteration; Wi  denotes the weights after the i iteration;  

hisi 1 indicates the accumulated gradient. The specific 

formula is presented as 

       Δhis𝑖+1 = momentum × Δhis𝑖 + 𝐿 ×
∂loss

∂𝑤
     (2) 

Here, hisi 1 represents the accumulated gradient after the  

i+1 iteration; hisi represents the accumulated gradient 

after the i iteration; 'momentum' refers to the momentum 

coefficient; L represents the current learning rate;  
𝜕loss

𝜕𝑤
 

denotes the derivative of the loss function.   

III. EXPERIMENTAL DESIGN 

A. Dataset 

This study utilizes the LUNA16 dataset, which serves as a 
subset of the publicly accessible lung nodule dataset LIDC-

IDRI[23]. It comprises CT images from 888 patients, divided 

into 10 subsets for storage. Each image set includes an mhd 

file and a raw file; the mhd file contains essential image 

metadata, while the raw file contains the pixel data. An 

illustrative example of a CT image is depicted in Figure 3. 

 

Figure 3: Example of a LUNA16 Image 

B. Preprocessing of the Dataset 

The LUNA16 dataset comprises raw image data (.raw) and 

metadata annotations (.mhd). Neural networks are unable to 

directly interpret these formats, The dataset was handled 

using the approach of Linked Data, which consolidates a 

variety of data formatations, a key aspect in academic studies 

[24]. This is well-organized handling of the data set that 

facilitates cross-referencing the data, hence enhancing 

interoperation among other data sets. This particularly comes 

in handy in areas such as machine learning and artificial 

intelligence, where data quality is everything in effective 

model training for accurate results. thus, images in .mhd 

format are converted to the universally compatible BMP 
format. This conversion yields RGB images equivalent to the 

number of CT slices, each displaying the complete 

information of a single slice. The annotation files provide the 

locations and characteristics of nodules, which, combined 

with slice depth, facilitate rapid localization of nodules and 

corresponding slices [25]. Variations in patient positioning 

during CT scans can cause image orientation issues, 

necessitating adjustments based on annotation data to 

reorient images correctly and update coordinate information. 

The small size of the dataset requires augmentation to ensure 

adequate training data volume. This study employs 
supervised data augmentation techniques on the BMP images 

to enrich the dataset and utilizes fine-tuning of the learning 

rate to mitigate overfitting. 

The pulmonary parenchyma includes the bronchial and 

terminal alveolar structures, representing the air-contacting 

cavities and walls within the lungs. In CT imaging, this is 
indicated by the black areas within the lung's white outlines. 

The focus of this research is on detecting pulmonary nodules, 

hence only the pulmonary parenchyma is analyzed. External 

contours of the lungs, which can disrupt neural network 

training, are excluded from analysis following image 

segmentation to isolate the pulmonary parenchyma. 

 

 

 

Figure 4: Original Image and Processed Pulmonary 

Parenchyma Image 

Figure 4 displays a typical slice from the LUNA16 dataset. 

Following binary transformation and morphological 

Node 

Number 

Combination 

Dropout rate 

0.3 

Dropout 

rate 0.4 

Dropout rate 

0.5 

1 024, 1024 86.33 87.64 88.62 

1 024, 512 87.71 88.44 88.78 

1 024, 256 86.53 87.61 88.56 

1 024, 128 87.26 86.81 88.32 

512, 512 86.26 84.41 87.32 

512, 256 86.26 87.13 88.10 

512, 128 86.76 87.10 86.83 

256, 256 81.41 87.46 88.21 

256, 128 83.03 84.51 87.26 

128, 128 86.26 84.43 87.22 
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operations like erosion and dilation, the pulmonary 

parenchyma is delineated from the lung contours as 

illustrated in the right-hand image. Subsequent processes 

focus solely on the isolated pulmonary parenchyma. 

C. Experimental Procedure 

The experiments were executed on a system running 

Windows 10, equipped with an Intel Core i5-6200U 

processor at 2.30 GHz, and utilized the TensorFlow 

framework and slim for fine-tuning the model, with Python 

version 3.6. 
The experimental setup included training on datasets from 

740 patients and testing on datasets from 130 patients. 

Initially, 2,000 images each of lung nodules and healthy 

tissues were extracted. Data augmentation techniques 

expanded the dataset to 5,000 images each of lung nodules 

and healthy tissues. Images were resized to a uniform 

330×330 pixels. Data splits for training and testing were 

varied as follows: 80% training and 20% testing, 70% 

training and 30% testing, and 60% training and 40% testing. 

Each configuration was trained until the loss function 

stabilized, followed by performance testing. Specifically, the 

80% training split underwent 2775 training steps on the slim 
model, reducing the loss function to 0.37 and achieving an 

accuracy of 88.79%; results for other splits are detailed in 

Table4. 

In these experiments, the bespoke RGIV3 network 

underwent training on both the training and validation sets 

and was evaluated on the test set. To circumvent the risk of 

converging to local optima, a step-wise reduction strategy 

was employed for the learning rate, adjusting it every 200 

iterations. 

D. Analysis of Experimental Results 

The results of the experiments provided measurements for 

True Positives (TP), True Negatives (TN), False Positives 

(FP), and False Negatives (FN). For assessing the 

performance of the model, three key metrics were selected 

[26]: Accuracy (Accu), Sensitivity (Sensi), and Specificity 

(Speci). The formulas used to compute these metrics are: 

                            Accu =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (3) 

                            Sensi =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                    (4) 

             Speci =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                     (5) 

Accuracy measures the degree of concordance between 

predicted and actual outcomes, while sensitivity assesses the 

model’s capability to detect pulmonary nodules. Specificity, 

on the other hand, evaluates the model’s ability to identify 

images that do not contain pulmonary nodules. The training 

processes for GIV3 and RGIV3 are depicted in Figure 5. As 

observed from Figure 5, RGIV3 demonstrates quicker 
convergence and enhanced stability in performance. 

Moreover, when considering accuracy, the enhanced RGIV3 

model has shown superior performance on the dataset. 

 

Figure 4: Training Process (Variation in Overall Loss) 

When utilizing 80% of the data as the training set and 20% 

as the test set, the comparative performance of each model is 

illustrated in Table 3. 

Table 3: Comparison of Model Performance 

Experiment 

NumberAccur

acy  

 

Recogniti

on Model 

Accura

cy 

Sensitivi

ty 

Specifici

ty 

1 Alexnet 85.35 87.73 73.0 

2 Yolo V3 84.05 88.75 82.2 

3 GIV3 86.06 85.01 80.5 

4 RGIV3 88.78 87.18 80.6 

 

Table 3 indicates that the enhanced model presented in this 
paper has achieved accuracy and sensitivity rates of 88.78% 

and 87.18%, respectively. These represent increases of 2.7% 

and 2.22% compared to the traditional GIV model, thereby 

achieving superior recognition performance. 

 To further assess the improved RGIV3 model 

comprehensively, experiments were carried out using 

various training-to-testing set ratios, with the outcomes 
detailed in Table 4. 

Table 4: Model performance comparison under different 

data ratios 

The ratio of 
training set to 

test set 

Accuracy 
Of GIV3 

Accuracy 
 Of RGIV3 

8-2 86.07 88.79 

7-3 84.20 87.56 

6-4 84.84 87.22 

Based on the above table and considering the training process 

analysis, the improved RGIV3 model exhibits better 
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recognition performance compared to the original GIV 

model. It outperforms GIV3 in recognition effectiveness at 

data ratios of 80%, 70%, and 60%. Additionally, it converges 

faster, indicating superior performance. 

IV. CONCLUSION 

This study presents a novel approach to detecting pulmonary 

nodules by utilizing an enhanced neural network model 

trained on a subset of the LUNA16 dataset. The integration 

of the GIV3 network with a meticulously crafted feature 

fusion layer augments the model's proficiency in feature 

extraction, thereby ameliorating the challenges posed by 

substantial disparities between the source and target datasets, 

commonly encountered in transfer learning scenarios. 

Empirical assessments, conducted through comparative 
experiments, substantiate the superior recognition 

capabilities of the proposed model compared to existing 

methodologies, underscoring its potential to enhance 

diagnostic accuracy in clinical settings. Despite the model's 

commendable performance, the issue of overfitting emerges 

due to the relatively limited size of the dataset. Nevertheless, 

this concern can be effectively mitigated through strategic 

measures such as dataset augmentation and meticulous fine-

tuning of learning rates. These efforts are imperative for 

bolstering the model's generalization capabilities and 

fortifying its resilience against overfitting tendencies, 
thereby ensuring its applicability in real-world scenarios. 

Looking ahead, future research could delve into integrating 

computational features with semantic attributes to enable a 

comprehensive quantitative assessment of pulmonary 

nodules. This holistic approach holds promise for furnishing 

clinicians with robust diagnostic evidence, facilitating 

informed decision-making processes and potentially 

enhancing patient outcomes. By advancing the 

amalgamation of computational prowess with clinical 

semantics, this research trajectory heralds a paradigm shift 

towards more nuanced and efficacious diagnostic 
methodologies in the realm of pulmonary medicine. 
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