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ABSTRACT- Knowledge distillation is a model 

compression technique that enhances the performance and 

efficiency of a smaller model (student model) by transferring 

knowledge from a larger model (teacher model). This 

technique utilizes the outputs of the teacher model, such as 

soft labels, intermediate features, or attention weights, as 

additional supervisory signals to guide the learning process 

of the student model. By doing so, knowledge distillation 
reduces computational resources and storage space 

requirements while maintaining or surpassing the accuracy 

of the teacher model. Research on knowledge distillation has 

evolved significantly since its inception in the 1980s, 

especially with the introduction of soft labels by Hinton and 

colleagues in 2015. Various advancements have been made, 

including methods to extract richer knowledge, knowledge 

sharing among models, integration with other compression 

techniques, and application in diverse domains like natural 

language processing and reinforcement learning. This article 

provides a comprehensive review of knowledge distillation, 
covering its concepts, methods, applications, challenges, and 

future directions. 

KEYWORDS- Knowledge Distillation, Model 

Compression, Neural Networks, Soft Labels 

I. INTRODUCTION 

Knowledge distillation is a model compression technique 

aimed at transferring knowledge from a large model (referred 
to as the teacher model) to a smaller model (known as the 

student model), thereby enhancing the performance and 

efficiency of the student model. The fundamental idea behind 

knowledge distillation is to utilize the outputs of the teacher 

model (such as soft labels, intermediate features, or attention 

weights) as additional supervisory signals to guide the 

learning process of the student model. The advantages of 

knowledge distillation include reducing the computational 

resources and storage space requirements of the model while 

maintaining or even surpassing the accuracy of the teacher 

model, making it suitable for various machine learning tasks 
and domains. 

Research on knowledge distillation began as early as the 

1980s, but it wasn't until 2015 when Hinton and colleagues 

proposed the use of soft labels for knowledge distillation that 

it gained widespread attention [1]. This approach involves 

using the teacher model's probability vectors (adjusted by 

temperature) as soft labels, along with the true labels, as part 

of the student model's loss function. This way, the student 

model can learn not only the correct classes but also the 

confidence and uncertainty of the teacher model. This 

method has been proven effective in areas such as image 

classification and speech recognition. 

With the development of deep learning, research on 

knowledge distillation has continued to advance, leading to 
many new methods and applications. For example, some 

methods attempt to extract richer knowledge from the teacher 

model's intermediate layers or other components (such as 

attention mechanisms [2] or convolutional kernels [3]), some 

methods consider knowledge sharing among multiple 

teacher or student models, some methods combine 

knowledge distillation with other model compression 

techniques (such as pruning [4] or quantization [5]) to further 

optimize the student model, and some methods apply 

knowledge distillation to fields like natural language 

processing, recommendation systems, and reinforcement 

learning. Additionally, theoretical analyses of knowledge 
distillation have also gained attention, aiming to reveal its 

essence and mechanisms to guide future research. 

This article aims to provide a comprehensive review of the 

concepts, methods, and applications of knowledge 

distillation, while also discussing its challenges and future 

directions. The organization of this article is as follows: 

Section two introduces the basic framework and commonly 

used evaluation metrics of knowledge distillation; Section 

three reviews the main methods of knowledge distillation; 

Section four discusses the integration of knowledge 

distillation with other technologies; Section five introduces 
application scenarios of knowledge distillation; Section six 

discusses the challenges and future research directions of 

knowledge distillation; and finally, the conclusion. 

II. KNOWLEDGE DISTILLATION 

A. Basic Framework 

Knowledge distillation is a model compression technique 

with the core idea of enabling a small student model to learn 

from a large teacher model's knowledge, thereby enhancing 

the student model's performance on the target task. 
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Figure 1: The basic framework of knowledge distillation 

The basic framework of knowledge distillation is illustrated 
in Figure 1 and typically involves the following steps: 

 Pretraining or Selecting a Suitable Teacher Model: The 
first step is to pretrain or select a teacher model suitable 

for the target task. The teacher model is usually a large 

deep neural network with high representational capacity 

and accuracy but comes with high computational and 

storage costs. Therefore, the teacher model may not be 

suitable for resource-constrained scenarios such as 

mobile devices or edge computing. 

 Designing or Selecting a Smaller Student Model: The 

second step is to design or select a relatively smaller 

student model. The student model is typically a deep 

neural network with a structure similar to the teacher 

model but smaller in scale, possessing lower 
representational capacity and accuracy but also lower 

computational and storage costs. Therefore, the student 

model is more suitable for resource-constrained scenarios 

but requires knowledge distillation to enhance its 

performance. 

 Conducting Knowledge Distillation with a Specific 

Dataset: The third step involves using a specific dataset 

(usually the training set or validation set of the target task) 

for knowledge distillation. The process of knowledge 

distillation can be seen as a form of supervised learning, 

where the teacher model serves as a soft label, the student 
model as a learner, and the dataset as input. The goal of 

knowledge distillation is to make the student model 

approximate the output distribution of the teacher model 

as closely as possible, thereby acquiring the teacher 

model's knowledge. 

 Evaluating the Student Model's Performance: The fourth 

step is to evaluate the student model's performance on the 

target task using appropriate evaluation metrics to 

compare the differences between the student model and 

the teacher model, analyzing the effectiveness and 

influencing factors of knowledge distillation. 

B. Mechanism 

The mechanism of knowledge distillation involves 

introducing soft targets (such as the output distribution, 

intermediate feature representations, relational information, 

or structural information of the teacher model) to assist in 

training the student model, thereby transferring and refining 
the teacher model's knowledge. Soft targets can capture the 

teacher model's latent knowledge, such as predicted 

uncertainties, similarities, and correlations, which are 

beneficial for improving the student model's performance 
[6,7]. The process of knowledge distillation typically involves 

two loss functions: one based on hard targets for 

classification loss to ensure the correctness of the student 

model, and another based on soft targets for distillation loss 

to measure the difference between the student model and the 

teacher model. By balancing these two loss functions, the 

student model can maintain accuracy while approaching the 

teacher model's knowledge as closely as possible. 

The following is the formula for the Knowledge Distillation 

loss function. 

𝐿 = (1 − 𝛼) ⋅ 𝐿CE(𝑦, 𝑦�̂�) + 𝛼 ⋅ 𝑇2 ⋅ 𝐿KL (𝜎 (
𝑦�̂�

𝑇
) , 𝜎 (

𝑦�̂�

𝑇
))           (1) 

    𝐿𝐶𝐸 is the cross-entropy loss function. 

LCE(y, yŝ) = − ∑ yi

i

log(ys,î)                                                           (2) 

    𝐿𝐾𝐿 is Kullback-Leibler Divergence. 

LKL(P, Q) = ∑ Pi

i

log (
Pi

Qi
) .                                                               (3) 

σ  is the softmax function, used to convert logits into a 

probability distribution. 

σ(zi) =
ezi

∑ ezj
j

                                                                                       (4) 

The overall formula combination is as follows. 

L = (1 − α) ⋅ (− ∑ yi

i

log(ys,î))                                                              

         +α ⋅ T2 ⋅ (∑ σ (
yt,î

T
)

i

log (
σ (

yt,î

T )

σ (
ys,î

T )
))                              (5)

 

C. Evaluation Metrics 

To evaluate the effectiveness of knowledge distillation, 

various evaluation metrics are commonly used to compare 

the performance differences between the student model and 

the teacher model on the target task. The most common 

evaluation metric is accuracy, which measures the proportion 

of correctly predicted samples to the total samples. Accuracy 

reflects the model's generalization ability on the test set and 

is a primary evaluation metric for many machine learning 

tasks. However, accuracy alone may not fully reflect the 

purpose of knowledge distillation because it requires the 

student model not only to achieve or surpass the accuracy of 
the teacher model but also to inherit other features of the 

teacher model as much as possible, such as confidence, 

uncertainty, and robustness. Therefore, several other 

evaluation metrics have been proposed to assess the 

effectiveness of knowledge distillation from different 

perspectives. Here are some common evaluation metrics: 
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 Relative Error: Defined as the ratio of the error rate of the 

teacher model to the error rate of the student model, 

where 𝐸𝑠 and 𝐸𝑡 are the error rates of the student model 

and the teacher model, respectively.  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐸𝑟𝑟𝑜𝑟 =
𝐸𝑠

𝐸𝑡

                                        (6) 

Relative error measures how much the student model 

improves relative to the error rate of the teacher model. A 

value close to 1 indicates closeness between the two, with 

values smaller than 1 indicating the superiority of the 

student model over the teacher model. 

 Distillation Factor: Defined as the ratio of the parameter 

count of the teacher model to the parameter count of the 

student model, where 𝑃𝑡  and 𝑃𝑠 are the parameter counts 

of the teacher model and the student model, respectively.  

𝐷𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑃𝑡

𝑃𝑠

                                       (7) 

The distillation factor measures the efficiency of 

knowledge distillation in model compression, with larger 

values indicating higher compression ratios and lighter 

student models. 

 Accuracy-Relative Error Curve: Plotting the performance 

of different student models on the test set against the 

relative error, with relative error on the x-axis and 

accuracy on the y-axis. This curve reflects the trade-off 

relationship between accuracy and relative error for 

different student models. Generally, models closer to the 

upper-left corner indicate better performance. 

 Accuracy-Distillation Factor Curve: Plotting the 

performance of different student models on the test set 

against the distillation factor, with the distillation factor 

on the x-axis and accuracy on the y-axis. This curve 

reflects the trade-off relationship between accuracy and 

the distillation factor for different student models. 

Generally, models closer to the upper-right corner 

indicate better performance. 

 Kullback-Leibler Divergence (KL Divergence): 

Measures the difference between the classification 

probability distributions of the teacher model and the 

student model, where 𝑃𝑡   and 𝑃𝑠  are the classification 

probability distributions of the teacher model and the 

student model, respectively. 

𝐾𝐿 = 𝐷𝐾𝐿(𝑃𝑡   || 𝑃𝑠)                                                    (8) 

KL divergence quantifies how much the student model 

deviates from the teacher model on soft labels, with 

smaller values indicating closeness between the two and 

better learning of the teacher model's confidence and 

uncertainty. 

 Correlation Coefficient: Measures the correlation 
between the classification probability distributions of the 

teacher model and the student model, where  and  

are the classification probability distributions of the 

teacher model and the student model, respectively.  

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 𝜌(𝑃𝑡 , 𝑃𝑠)                   (9) 

The correlation coefficient quantifies the consistency of 
the student model with the teacher model on soft labels. 

D. Knowledge Forms 

The knowledge forms of knowledge distillation refer to the 

different types of knowledge accumulated by the teacher 

model during the training process and how this knowledge is 

transferred to the student model. Based on the source and 

representation of knowledge, knowledge distillation's 

knowledge forms can be categorized into the following four 

types: 

 Output Feature Knowledge: This is the most common 
form of knowledge and is also used in classical 

knowledge distillation methods. Output feature 

knowledge refers to the probability distribution vector 

generated by the teacher model at the output layer 

(usually the softmax layer), also known as soft labels. 

Soft labels contain more information compared to hard 

labels and can reflect the teacher model's confidence and 

preferences for different classes. By using soft labels as 

additional supervision signals, the student model can 

better fit the data distribution and improve generalization 

ability. [8-13] 

 Intermediate Feature Knowledge: Apart from the output 
layer, the teacher model also produces valuable feature 

representations at intermediate layers, reflecting its 

abstract understanding and encoding of input data. 

Intermediate feature knowledge refers to using the 

feature representations from the intermediate layers of 

the teacher model to guide the training of the student 

model. Aligning the intermediate layers of the teacher 

model and the student model can help the student model 

converge faster and learn more effective feature 

representations. [14-18] 

 Relationship Feature Knowledge: In addition to 
individual feature representations, the teacher model also 

contains implicit relationship information internally, such 

as similarity between samples or dependencies between 

classes. Relationship feature knowledge refers to using 

this internal relationship information from the teacher 

model as soft targets to assist the student model in 

learning. Aligning the relationship information between 

the teacher model and the student model can help the 

student model better capture the structure and semantic 

information of the data and enhance the model's 

robustness. [19-26] 

Structural Feature Knowledge: Apart from content 
information, the structure of the teacher model also contains 

knowledge, such as graph structures, hierarchical structures, 

attention mechanisms, etc. Structural feature knowledge 

refers to the student model improving its performance by 

learning the structural information from the teacher model. 

By making the structure of the teacher model and the student 

model similar or compatible, the student model can better 

utilize the computational resources and optimization 

strategies of the teacher model, improving flexibility and 

scalability. [27-29]  

III. KNOWLEDGE DISTILLATION METHODS 

Knowledge fusion refers to integrating the knowledge of 

multiple teacher models into a single student model. This 

approach leverages the complementarity of different teacher 

models to enhance the coverage and diversity of the student 

model, while also reducing bias and noise from a single 

teacher model.  
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A. Multi-Teacher Learning 

 
Figure 2: framework of Multi-teacher learning 

Multi-teacher learning framework demonstrated in Figure 2 

involves using the knowledge of multiple teacher models 

simultaneously to train a student model, enhancing 
robustness and generalization performance. This method 

allows the student model to learn knowledge from multiple 

perspectives, avoiding overfitting or underfitting, and can 

also increase the adaptability and transferability of the 

student model.  

You et al. [30] proposed a strategy to integrate the outputs of 

multiple teacher models and used a weighted averaging 

method to generate the learning targets for the student model. 

This approach has demonstrated excellent performance 

across various tasks. Liu et al. [31] introduced an intermediate 

representation layer to facilitate more effective knowledge 
transfer from multiple teacher models to the student model. 

This method has shown its superiority on multiple 

benchmark datasets. Park et al. [20] utilized the relational 

information between teacher models to guide the training of 

the student model. This method not only focuses on the 

outputs of individual models but also considers the 

relationships between models, thereby further enhancing the 

performance of the student model. 

B. Teacher Assistant 

Teacher assistant involves introducing auxiliary tasks to 

enhance the knowledge of teacher models before transferring 

it to the student model. This method allows teacher models 

to learn more relevant knowledge during training, thereby 

improving the effectiveness and quality of the student model 

and reducing the complexity gap between teacher and student 

models.  

Mirzadeh et al. [32] introduced one or more assistant models 
between the teacher and student models to transfer 

knowledge in stages. Each assistant model is responsible for 

learning from the previous model (either the teacher or the 

previous assistant) and passing the knowledge to the next 

model (either the next assistant or the student). In multiple 

benchmarks, this method significantly improved the 

performance of the student model, demonstrating the 

effectiveness of the teacher assistant model in knowledge 

distillation. Gou et al. [33] summarized the role and 

advantages of the teacher assistant model in knowledge 

distillation, discussing its contributions to improve 

knowledge transfer efficiency and enhancing student model 
performance. They also highlighted the challenges faced by 

the teacher assistant model in the field of knowledge 

distillation, such as the selection and optimization of 

assistant models, and proposed potential future research 

directions and improvement strategies. 

C. Cross-Modal Distillation 

 

Figure 3: framework of Cross-modal distillation 

Cross-modal distillation illustrated in Figure 3 involves 

knowledge distillation across different data modalities to 
improve the model's multimodal performance. In this 

framework, data is processed through distinct modal 

pathways – Modality 1 and Modality 2. Modality 1 informs 

the teaching strategy employed by the Teacher model, which 

in turn guides the learning of the Student model. Modality 2 

directly influences the Student model. This approach enables 

the student model to leverage knowledge from teacher 

models across different modalities, enhancing the student 

model's expressive and reasoning abilities, and expanding its 

application scenarios and functionalities.  

Yang [33] et al. investigated cross-modal distillation in text-

to-image generation tasks and proposed a Dual-Modality 
Knowledge Distillation [34] method. By simultaneously 

optimizing text and image generation models, they improved 

the quality and consistency of image generation. Kim et al. 

introduced a knowledge distillation method from speech to 

text, named Speech2Text Distillation [35], leveraging pre-

trained speech recognition models to enhance text generation 

models. They significantly improved the performance of 

speech-to-text tasks through cross-modal distillation.  

D. Mutual Distillation 

Mutual distillation involves the mutual transfer of knowledge 

between teacher and student models to collectively improve 

performance. This method allows teacher and student models 

to reference each other, improving their consistency and 

similarity, and promoting mutual learning and improvement.  

Zhang et al. [36] proposed that models are trained 

independently on the dataset to learn the features and patterns 
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of the raw data. Then, the feature representations of the 

models are passed to other models, allowing them to learn 

each other's feature representations. Based on the exchanged 

feature information, each model updates its parameters to 

better capture the data's features and improve model 
performance. Chen et al. [37] proposed that knowledge 

exchange between peer models can be achieved by passing 

probability distributions, feature representations, or model 

parameters. Based on the knowledge from peer models, 

updates and optimizations are made to the target model to 

enhance its generalization ability and performance. 

E. Lifelong Distillation 

Lifelong distillation utilizes the knowledge of historical 

models to assist in the training of the current model, 

maintaining model performance stability. This method 

allows the current model to gain experience and insights 

from historical models, improving its rapid convergence and 

adaptation to new data, and preventing catastrophic 

forgetting or performance degradation issues.  

Li et al. [38] proposed a knowledge distillation-based method, 

which transfers knowledge from a teacher model to a student 

model, thereby achieving the goal of retaining old task 
knowledge while learning new tasks. By designing 

appropriate loss functions and model update strategies, this 

method can effectively avoid conflicts between new and old 

knowledge, thus achieving the "learning without forgetting" 

effect. Hou et al. [39] introduced a progressive distillation 

method, gradually distilling old knowledge into a new model, 

thus achieving the goal of lifelong learning. What sets this 

article apart is the introduction of a retrospection mechanism, 

where during the learning of new tasks, old task knowledge 

is revisited and strengthened to improve the model's balance 

and stability between old and new tasks. 

F. Self-Distillation 

Self-distillation optimizes the model itself by learning its 

own soft targets to enhance generalization capability. This 

method allows the model to generate smoother and more 

flexible targets during training, thereby improving 

uncertainty and robustness, and reducing variance and noise.  
Yun et al. [40] proposed a method for regularizing class-wise 

predictions via self-knowledge distillation. Through self-

distillation, the model can learn the correlation and 

distinctiveness between classes, thereby improving the 

classification performance across different categories. Xu et 

al. [41] introduced a self-distillation method guided by data 

distortion for deep neural networks. By incorporating data 

distortion, the model can better learn the features of data and 

enhance its performance through self-distillation. Nie et al. 
[42] presented a dynamic kernel distillation method for 

efficient pose estimation in videos. Through self-distillation, 
the model can learn the representation of dynamic features in 

videos, enhancing the efficiency of pose estimation.  

IV. APPLICATION SCENARIOS 

Knowledge distillation is widely used in fields such as image 

classification, object detection, semantic segmentation, 

natural language processing, etc., to reduce computational 

and storage costs while maintaining model accuracy, making 

it particularly suitable for mobile and edge computing 

scenarios. Here are some specific application scenarios: 

A. Image Classification: By applying knowledge 

distillation, large-scale image classification models like 

ResNet [43], VGG [44], etc., can be compressed into smaller 

models like MobileNet [45], ShuffleNet [46], etc., enabling 
fast and accurate image classification on mobile devices.  

B. Object Detection: Knowledge distillation can compress 

high-performance object detection models like Faster R-

CNN [47], YOLO [48], etc., into lightweight models like 

SSD [49], Tiny YOLO [50], etc., allowing real-time and 

precise object detection in resource-constrained 
environments. 

C. Semantic Segmentation: Complex semantic 

segmentation models like DeepLab [51], PSPNet [52], etc., 

can be compressed into simpler models like SegNet [53], 

ENet [54], etc., through knowledge distillation, achieving 

efficient and accurate semantic segmentation on edge 
devices. 

D. Natural Language Processing: Large-scale natural 

language processing models like BERT [55], GPT [56], etc., 

can be compressed into smaller models like DistilBERT 
[57], MobileBERT [58], etc., through knowledge 

distillation, enabling high-performance and low-resource 

natural language processing across various tasks. 

V. CHALLENGES AND FUTURE DIRECTIONS 

As an advanced technology, knowledge distillation also 

faces some challenges and issues that require further research 

to explore and solve. These mainly include: 

G. Model Robustness: Improving the student model's 

robustness to noise and interference is one of the future 

challenges. Since knowledge distillation is based on 

learning from soft targets, the student model may become 

overly sensitive to errors or uncertainties from the teacher 
model, affecting its robustness. Future research can 

explore methods to enhance the model's robustness 

during knowledge distillation, such as adversarial 

training, noise injection, confidence filtering, etc. 

H. Cross-Domain Knowledge Transfer: Effectively 

transferring knowledge between different data 

distributions and domains is another research direction 

for the future. When the data distributions or domains of 

the teacher and student models are inconsistent, 

knowledge mismatch or adaptation issues may arise, 

affecting model performance. Future research can 
explore methods to enhance the model's cross-domain 

adaptation during knowledge distillation, such as domain 

adaptation, domain alignment, domain generation, etc. 

I. Structured Knowledge Distillation: Leveraging internal 

structural information of models for knowledge 

distillation is another future research direction. Since 

knowledge distillation operates at the feature level, it may 

overlook structural information within the model, such as 

graph structures, hierarchical structures, etc., which can 

be beneficial for model performance and understanding. 

Future research can explore methods to incorporate 

structured knowledge into knowledge distillation, such as 
graph convolutional networks, attention mechanisms, 

structural similarity, etc. 

J. Multimodal Fusion: Integrating visual, linguistic, and 

other multimodal information into knowledge distillation 

to enhance the model's multimodal performance is 

another research direction for the future. Since 

knowledge distillation primarily focuses on learning from 
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a single modality, it may overlook the complementarity 

and enhancement between different modalities, which 

can be beneficial for model performance and 

generalization. Future research can explore methods to 

incorporate multimodal knowledge into knowledge 
distillation, such as cross-modal distillation, multimodal 

fusion, multimodal generation, etc. 

VI. CONCLUSION 

Knowledge distillation is an effective technique for model 

compression and optimization, transferring knowledge from 

teacher models to student models to improve performance. 

However, it also faces challenges and issues such as 

balancing goals and constraints, expanding scenarios and 

scopes, etc. Addressing these issues through future research 
will further promote the development and application of 

knowledge distillation. 
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